TY - GEN
T1 - Organic shale analysis using geochemical data and seismic attributes
T2 - 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
AU - Manaf, P. E.
AU - Supriyanto, null
AU - Haris, Abd.
AU - Usman, A.
AU - Riyanto, Agus
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/7/10
Y1 - 2017/7/10
N2 - Organic shale analysis of Talang Akar Formation, south Sumatera basin has been carried out using integrated seismic attributes, petrophysical and geochemical data. This shale layer has been deposited in sagging phase with low deposition energy at transgression period, which results in abundant shale deposit. The paper is aimed at characterizing the geochemical and petrophysical properties of shale rock formation and mapping their distribution using transformed seismic data into acoustic impedance and Total Organic Carbon (TOC). The assessment of this shale formation is carried out by first analyzing rock physics properties to identify the interest zone of a reservoir. The next step is performing geochemical analysis to quantify TOC and determine the maturity level of the shale formation. In order to map the shale formation distribution, we transform seismic data into acoustic impedance and further into organic-rich shale (TOC) distribution. Our analysis of petrophysical and geochemical properties shows that there are two interest zones, in the depth interval of 2030-2182 m (zone A) and 2204-2396 m (zone B). Both zones are predicted as shale layer that has very good organic richness criteria and fulfills sufficient maturity level. In addition, the shale layer distribution is represented by inverted acoustic impedance and TOC, where we found the consistent information related to identified interest zone A and B, which is indicated by relatively low impedance and relatively high TOC. Further, these two zones (zone A and B) are predicted as the potential sweet spot to be explored as unconventional hydrocarbon resource.
AB - Organic shale analysis of Talang Akar Formation, south Sumatera basin has been carried out using integrated seismic attributes, petrophysical and geochemical data. This shale layer has been deposited in sagging phase with low deposition energy at transgression period, which results in abundant shale deposit. The paper is aimed at characterizing the geochemical and petrophysical properties of shale rock formation and mapping their distribution using transformed seismic data into acoustic impedance and Total Organic Carbon (TOC). The assessment of this shale formation is carried out by first analyzing rock physics properties to identify the interest zone of a reservoir. The next step is performing geochemical analysis to quantify TOC and determine the maturity level of the shale formation. In order to map the shale formation distribution, we transform seismic data into acoustic impedance and further into organic-rich shale (TOC) distribution. Our analysis of petrophysical and geochemical properties shows that there are two interest zones, in the depth interval of 2030-2182 m (zone A) and 2204-2396 m (zone B). Both zones are predicted as shale layer that has very good organic richness criteria and fulfills sufficient maturity level. In addition, the shale layer distribution is represented by inverted acoustic impedance and TOC, where we found the consistent information related to identified interest zone A and B, which is indicated by relatively low impedance and relatively high TOC. Further, these two zones (zone A and B) are predicted as the potential sweet spot to be explored as unconventional hydrocarbon resource.
UR - http://www.scopus.com/inward/record.url?scp=85026248922&partnerID=8YFLogxK
U2 - 10.1063/1.4991282
DO - 10.1063/1.4991282
M3 - Conference contribution
AN - SCOPUS:85026248922
T3 - AIP Conference Proceedings
BT - International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
A2 - Sugeng, Kiki Ariyanti
A2 - Triyono, Djoko
A2 - Mart, Terry
PB - American Institute of Physics Inc.
Y2 - 1 November 2016 through 2 November 2016
ER -