Optimum input flow rate of solar still XX in producing purified water based on geographical condition in Depok, West Java

Reski Septiana, Michael Abraham Listyawan, Bayu Wisely Purbojati, Ibnu Roihan, Raldi Artono Koestoer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

One of the causes of drought crises in Indonesia was the mixing of water in the residents' dug wells with seawater - brackish water - whose salinity is high and not following drinking water standards. The lack of clean water usually occurs during the long-dry season, is advantageous because of the abundant source of solar radiation. Therefore, the brackish water desalination process can be done utilizing solar energy. Carocell 3000 solar-still has been widely used to produce purified water because of its low price and ease of use. According to the manufacturer, this solar-still can provide purified water from 65% of the solar energy it receives. Nevertheless, the information on the optimum input flow rate is missing. This study aims to determine the optimum input flowrate of Carocell 3000 solar-still to produce the maximum volume of purified water. The experiment was conducted in July by varying the amount of input flowrate ranging from 48, 72, 92, to 120 ml/min then measuring the volume of purified water produced within an hour. The limitation of only one solar-still available made the testing of parameter variations cannot be done simultaneously at the same time on the same weather conditions, so data for the analysis were collected from several days of testing. Data with the almost equal value of solar radiation were selected to see the performance of solar-still in producing the maximum volume of purified water with different variations of input flow rate. The result showed that input flowrate affects the production of purified water, but not linearly. With the average solar radiation of 461±24 W/m2, the input flow rate of 48 ml/min was the optimum input flow rate for Carocell 3000, which has an evaporator surface area of 3m2, because of its higher efficiency of purified water produced within an hour, around 34%.

Original languageEnglish
Title of host publication5th International Tropical Renewable Energy Conference, i-TREC 2020
EditorsRidho Irwansyah, Muhammad Arif Budiyanto
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735441286
DOIs
Publication statusPublished - 23 Sep 2021
Event5th International Tropical Renewable Energy Conference, i-TREC 2020 - Depok, Indonesia
Duration: 29 Oct 202030 Oct 2020

Publication series

NameAIP Conference Proceedings
Volume2376
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference5th International Tropical Renewable Energy Conference, i-TREC 2020
Country/TerritoryIndonesia
CityDepok
Period29/10/2030/10/20

Fingerprint

Dive into the research topics of 'Optimum input flow rate of solar still XX in producing purified water based on geographical condition in Depok, West Java'. Together they form a unique fingerprint.

Cite this