TY - GEN
T1 - Optimum input flow rate of solar still XX in producing purified water based on geographical condition in Depok, West Java
AU - Septiana, Reski
AU - Listyawan, Michael Abraham
AU - Purbojati, Bayu Wisely
AU - Roihan, Ibnu
AU - Koestoer, Raldi Artono
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/9/23
Y1 - 2021/9/23
N2 - One of the causes of drought crises in Indonesia was the mixing of water in the residents' dug wells with seawater - brackish water - whose salinity is high and not following drinking water standards. The lack of clean water usually occurs during the long-dry season, is advantageous because of the abundant source of solar radiation. Therefore, the brackish water desalination process can be done utilizing solar energy. Carocell 3000 solar-still has been widely used to produce purified water because of its low price and ease of use. According to the manufacturer, this solar-still can provide purified water from 65% of the solar energy it receives. Nevertheless, the information on the optimum input flow rate is missing. This study aims to determine the optimum input flowrate of Carocell 3000 solar-still to produce the maximum volume of purified water. The experiment was conducted in July by varying the amount of input flowrate ranging from 48, 72, 92, to 120 ml/min then measuring the volume of purified water produced within an hour. The limitation of only one solar-still available made the testing of parameter variations cannot be done simultaneously at the same time on the same weather conditions, so data for the analysis were collected from several days of testing. Data with the almost equal value of solar radiation were selected to see the performance of solar-still in producing the maximum volume of purified water with different variations of input flow rate. The result showed that input flowrate affects the production of purified water, but not linearly. With the average solar radiation of 461±24 W/m2, the input flow rate of 48 ml/min was the optimum input flow rate for Carocell 3000, which has an evaporator surface area of 3m2, because of its higher efficiency of purified water produced within an hour, around 34%.
AB - One of the causes of drought crises in Indonesia was the mixing of water in the residents' dug wells with seawater - brackish water - whose salinity is high and not following drinking water standards. The lack of clean water usually occurs during the long-dry season, is advantageous because of the abundant source of solar radiation. Therefore, the brackish water desalination process can be done utilizing solar energy. Carocell 3000 solar-still has been widely used to produce purified water because of its low price and ease of use. According to the manufacturer, this solar-still can provide purified water from 65% of the solar energy it receives. Nevertheless, the information on the optimum input flow rate is missing. This study aims to determine the optimum input flowrate of Carocell 3000 solar-still to produce the maximum volume of purified water. The experiment was conducted in July by varying the amount of input flowrate ranging from 48, 72, 92, to 120 ml/min then measuring the volume of purified water produced within an hour. The limitation of only one solar-still available made the testing of parameter variations cannot be done simultaneously at the same time on the same weather conditions, so data for the analysis were collected from several days of testing. Data with the almost equal value of solar radiation were selected to see the performance of solar-still in producing the maximum volume of purified water with different variations of input flow rate. The result showed that input flowrate affects the production of purified water, but not linearly. With the average solar radiation of 461±24 W/m2, the input flow rate of 48 ml/min was the optimum input flow rate for Carocell 3000, which has an evaporator surface area of 3m2, because of its higher efficiency of purified water produced within an hour, around 34%.
UR - http://www.scopus.com/inward/record.url?scp=85116490797&partnerID=8YFLogxK
U2 - 10.1063/5.0063866
DO - 10.1063/5.0063866
M3 - Conference contribution
AN - SCOPUS:85116490797
T3 - AIP Conference Proceedings
BT - 5th International Tropical Renewable Energy Conference, i-TREC 2020
A2 - Irwansyah, Ridho
A2 - Budiyanto, Muhammad Arif
PB - American Institute of Physics Inc.
T2 - 5th International Tropical Renewable Energy Conference, i-TREC 2020
Y2 - 29 October 2020 through 30 October 2020
ER -