TY - JOUR
T1 - Optimizing performance of Li4Ti5O12 nanorod doped C@ZnO by hydrothermal synthesis as half-cell lithium-ion battery anode
AU - Priyono, B.
AU - Nugraha, M. R.
AU - Syahrial, A. Z.
AU - Faizah,
AU - Subhan, A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/7/3
Y1 - 2019/7/3
N2 - Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight %, i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on structure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
AB - Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight %, i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on structure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
UR - http://www.scopus.com/inward/record.url?scp=85068964738&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/541/1/012025
DO - 10.1088/1757-899X/541/1/012025
M3 - Conference article
AN - SCOPUS:85068964738
SN - 1757-8981
VL - 541
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012025
T2 - 2nd International Seminar on Metallurgy and Materials, ISMM 2018
Y2 - 25 September 2018 through 26 September 2018
ER -