Optimization of hybrid PVA/hFDM scaffold preparation

Rizqa Inayati, Muhammad Suhaeri, Nuzli Fahdia, Melinda Remelia, Radiana Dhewayani Antarianto

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Osteogenic differentiation from Mesenchymal Stem Cell (MSC) to osteoblast has a clinical significance which is very important for treating bone injuries, in the form of femoral fractures with the most cases in Indonesia. Various studies have been conducted to find the best scaffold that can improve osteogenic differentiation, one of which is the development of a hybrid scaffold made from natural biomaterials in the form of the extracellular matrix, and from synthetic biomaterials. The discovery of the best scaffold is not only focused on the source of the scaffold but also requires optimization of the method in making the scaffold. Therefore, the aim of this study is to find out the optimum method for making hybrid scaffolds that support osteogenic differentiation from MSC. Materials and methods: human Fibroblast-derived Matrix (hFDM) as a hybrid scaffold material collected from decellularized fibroblasts cultures from post-cleft-surgery reconstruction palatal skin. Fibroblast cell cultures were divided into two groups of cultures, cultures without Platelet Rich Plasma (PRP), and cultures with the addition of PRP. For decellularization, we performed optimization at the preparation stage of the decellularization solution, and the time of culture for decellularization. In the preparation of the decellularization solution, we divided it into two groups, NH4OH as material from the decellularization solution was diluted with PBS before mixing with 0.25% Triton X-100, and NH4OH was diluted directly in 0.25% Triton X-100. In optimizing the culture time for decellularization, we divided it into three groups, decellularization on the day when cell growth reached 100% confluent, decellularization on the 3rd day after 100% confluent (H + 3) cells, and decellularization on the 4th day after 100% confluent (H + 4) cells. Next, the hFDM matrix is collected and added Polyvinyl Alcohol (PVA) solutions to form a hybrid PVA / hFDM scaffold in the form of a hydrogel. Observations on hybrid PVA / hFDM scaffolds were made using an inversion microscope. Results and discussion: Optimization of methods for culture techniques found that the addition of PRP to fibroblast culture medium increased the rate of fibroblast proliferation. For the decellularization technique, it is known that the preparation of the decellular solution by diluting NH4OH directly in 0.25% Triton X-100 to obtain a final concentration of 50mM NH4OH is known to be effectively used in decellularizing fibroblasts. The optimum culture time is also known that a thicker hFDM matrix can be obtained on day 4 after 100% confluent (H + 4) cells. Conclusion: Making a good hFDM hybrid PVA scaffold requires method optimization, ranging from fibroblast culture techniques and decellularization techniques. Proper optimization can produce a hybrid PVA / hFDM scaffold which is suitable for bone tissue engineering applications.

Original languageEnglish
Title of host publication5th Biomedical Engineering''s Recent Progress in Biomaterials, Drugs Development, and Medical Devices
Subtitle of host publicationProceedings of the 5th International Symposium of Biomedical Engineering, ISBE 2020
EditorsKenny Lischer, Sugeng Supriadi, Siti Fauziyah Rahman, Yudan Whulanza
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735440869
DOIs
Publication statusPublished - 23 Mar 2021
Event5th International Symposium of Biomedical Engineering, ISBE 2020 - Depok, Virtual, Indonesia
Duration: 28 Jul 202029 Jul 2020

Publication series

NameAIP Conference Proceedings
Volume2344
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference5th International Symposium of Biomedical Engineering, ISBE 2020
CountryIndonesia
CityDepok, Virtual
Period28/07/2029/07/20

Keywords

  • decellularization
  • fibroblast culture
  • hybrid PVA/hFDM scaffold

Fingerprint Dive into the research topics of 'Optimization of hybrid PVA/hFDM scaffold preparation'. Together they form a unique fingerprint.

Cite this