TY - JOUR
T1 - Optimal control problem on COVID-19 disease transmission model considering medical mask, disinfectants and media campaign
AU - Aldila, Dipo
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2020.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/10
Y1 - 2020/11/10
N2 - In this paper, a system of ordinary differential equation approach is developed to understand the spread of COVID-19. We first formulate the dynamic model by dividing the human population based on their health status, awareness status, and also including the free virus on the environment. We provide a basic analysis of the model regarding the well-posed properties and how the basic reproduction number can be used to determine the final state of COVID-19 in the population. A Pontryagin Maximum's Principle used to construct the model as an optimal control problem in a purpose to determine the most effective strategies against the spread of COVID-19. Three control strategies involved in the model, such as media campaign to develop an awareness of individuals, medical masks to prevent direct transmission, and use of disinfectant to reduce the number of free virus in the environment. Through numerical simulations, we find that the time-dependent control succeeds in reducing the outbreak of COVID-19. Furthermore, if the intervention should be implemented as a single intervention, then the media campaign gives the most effective cost strategy.
AB - In this paper, a system of ordinary differential equation approach is developed to understand the spread of COVID-19. We first formulate the dynamic model by dividing the human population based on their health status, awareness status, and also including the free virus on the environment. We provide a basic analysis of the model regarding the well-posed properties and how the basic reproduction number can be used to determine the final state of COVID-19 in the population. A Pontryagin Maximum's Principle used to construct the model as an optimal control problem in a purpose to determine the most effective strategies against the spread of COVID-19. Three control strategies involved in the model, such as media campaign to develop an awareness of individuals, medical masks to prevent direct transmission, and use of disinfectant to reduce the number of free virus in the environment. Through numerical simulations, we find that the time-dependent control succeeds in reducing the outbreak of COVID-19. Furthermore, if the intervention should be implemented as a single intervention, then the media campaign gives the most effective cost strategy.
UR - http://www.scopus.com/inward/record.url?scp=85096411896&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/202020212009
DO - 10.1051/e3sconf/202020212009
M3 - Conference article
AN - SCOPUS:85096411896
SN - 2555-0403
VL - 202
JO - E3S Web of Conferences
JF - E3S Web of Conferences
M1 - 12009
T2 - 5th International Conference on Energy, Environmental and Information System, ICENIS 2020
Y2 - 12 August 2020 through 13 August 2020
ER -