Abstract
Absorption chillers constitute a valuable option for utilising solar energy. Specifically, when installed in tropical regions, this technology ideally matches the needs for refrigeration and air-conditioning because of the abundance of solar energy throughout the year. A single-double-effect absorption chiller combines the single and double-effect configurations to compensate for the unpredictable instantaneous availability of solar radiation and cooling load fluctuations. The operative performance of this system is strongly affected by internal parameters such as the absorber outlet solution flow rate and the solution distribution ratio, which connect the operability of the single and double-effect configurations. Therefore, these important parameters are currently used to maximise system performance while assuring its stability. This study discusses how the COP of a single-double-effect absorption chiller, for solar cooling applications in tropical areas, can be maximised (1.55 at full load, and up to 2.42 at 60% partial load) by manipulating those internal parameters. The simulation results were compared with the experimental data (field test data) and, by adopting the appropriate control method, showed an improvement of the system performance between 12 and 60% when compared to a corresponding double-effect configuration.
Original language | English |
---|---|
Pages (from-to) | 299-311 |
Number of pages | 13 |
Journal | Applied Energy |
Volume | 219 |
DOIs | |
Publication status | Published - 1 Jun 2018 |
Keywords
- Absorption chiller
- Control method
- Double-effect
- Internal parameter
- Single-effect
- Solar cooling