TY - GEN
T1 - Numerical investigation of heat transfer and pressure loss of flow through a heated plate mounted by perforated concave rectangular winglet vortex generators in a channel
AU - Syaiful,
AU - Kusuma, Nakula
AU - Muchammad,
AU - Wulandari, Retno
AU - Sinaga, Nazarudin
AU - Siswantara, Ahmad
AU - Bae, Myung Whan
N1 - Funding Information:
This work was supported by the International Publication Reseach (RPI) of Diponegoro University, Indonesia (Universitas Diponegoro, Number 329-106/UN7.P4.3/PP/2019). The authors are grateful to all research members, especially those of Lab. Thermofluid of Mechanical Engineering of Diponegoro University Indonesia, Mechanical Engineering Department of Malang State University of Indonesia, Mechanical Engineering Department of University of Indonesia, and Advanced Combustion Lab. of Mechanical and Aerospace Engineering Faculty of Gyeongsang National University Korea.
Publisher Copyright:
© 2020 Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/5/6
Y1 - 2020/5/6
N2 - The low thermal conductivity of air in fin-and-tube heat exchangers causes high thermal resistance of the air side and results in a low heat transfer rate. This heat transfer rate on the air side can be improved by increasing the heat transfer coefficient. One way to increase the heat transfer coefficient on the air side is to use a vortex generator (VG), which can generate longitudinal vortex (LV) increasing fluid mixing. Therefore, this study aims to numerically analyze heat transfer characteristics and pressure drop of airflow through a heated plate by installing VG in a rectangular channel. Vortex generators (VGs) used in numerical modeling are rectangular winglet pairs (RWPs) and concave rectangular winglet pairs (CRWPs) with 30° attack angle. The number of pairs of VG is varied by one, two, and three with/without holes. The velocity of airflow varies in the range of 0.4-2.0 m/s at intervals of 0.2 m/s. The simulation results show that in the configuration of the three pairs of VG, the decrease in the convection heat transfer coefficient in the case of the perforated CRWP is 3.98% of the CRWP without holes at a velocity of 2.0 m/s. While in the configuration of three pairs of perforated RWP VGs, the decrease in convection heat transfer coefficient is 5.87% from RWP without holes at a velocity of 2.0 m/s. In the configuration of three pairs of perforated VGs at the highest velocity, the decrease in pressure drop in the CRWP and RWP cases is 30.73% and 13.87% of the VGs without holes, respectively.
AB - The low thermal conductivity of air in fin-and-tube heat exchangers causes high thermal resistance of the air side and results in a low heat transfer rate. This heat transfer rate on the air side can be improved by increasing the heat transfer coefficient. One way to increase the heat transfer coefficient on the air side is to use a vortex generator (VG), which can generate longitudinal vortex (LV) increasing fluid mixing. Therefore, this study aims to numerically analyze heat transfer characteristics and pressure drop of airflow through a heated plate by installing VG in a rectangular channel. Vortex generators (VGs) used in numerical modeling are rectangular winglet pairs (RWPs) and concave rectangular winglet pairs (CRWPs) with 30° attack angle. The number of pairs of VG is varied by one, two, and three with/without holes. The velocity of airflow varies in the range of 0.4-2.0 m/s at intervals of 0.2 m/s. The simulation results show that in the configuration of the three pairs of VG, the decrease in the convection heat transfer coefficient in the case of the perforated CRWP is 3.98% of the CRWP without holes at a velocity of 2.0 m/s. While in the configuration of three pairs of perforated RWP VGs, the decrease in convection heat transfer coefficient is 5.87% from RWP without holes at a velocity of 2.0 m/s. In the configuration of three pairs of perforated VGs at the highest velocity, the decrease in pressure drop in the CRWP and RWP cases is 30.73% and 13.87% of the VGs without holes, respectively.
KW - Field synergy principle
KW - Heat transfer
KW - Longitudinal vortex intensity
KW - Perforated concave rectangular winglet
KW - Pressure loss
UR - http://www.scopus.com/inward/record.url?scp=85096386691&partnerID=8YFLogxK
U2 - 10.1063/5.0000993
DO - 10.1063/5.0000993
M3 - Conference contribution
AN - SCOPUS:85096386691
T3 - AIP Conference Proceedings
BT - Recent Progress on
A2 - Nahry, null
A2 - Marthanty, Dwinanti Rika
PB - American Institute of Physics Inc.
T2 - 16th International Conference on Quality in Research, QiR 2019 - 2019 International Symposium on Advances in Mechanical Engineering, ISAME 2019
Y2 - 22 July 2019 through 24 July 2019
ER -