Novel Interactions of Myristic Acid and FADS3 Variants Predict Atopic Dermatitis among Indonesian Infants

Conny Tanjung, Carla P. Harris, Hans Demmelmair, Sarah Dwitya, Zakiudin Munasir, Herawati Sudoyo, Marie Standl, Damayanti Rusli Sjarif, Berthold Koletzko

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Fatty acids exert a range of different biological activities that could be relevant in the development of atopic dermatitis (AD). This study investigated the association of glycerophospholipid fatty acids (GPL-FA) with AD, and their interactions with single nucleotide polymorphisms (SNP) of the FADS1-3 gene cluster. Among 390 infants of the Indonesian ISADI study, GPL-FA were measured in umbilical plasma (P-0y) and in buccal cells at birth (B-0y), and again in buccal cells at AD onset or one year (B-1y). Prospective and cross-sectional associations with AD were assessed by logistic regression. Interactions of GPL-FA with 14 SNP were tested assuming an additive model. AD was diagnosed in 15.4% of participants. In B-1y, C18:2n-6 was inversely associated with AD; and positive associations were observed for C18:1n-9, C20:4n-6, C22:6n-3 and C20:4n-6/C18:2n-6. There were no prospective associations with AD, however, a significant interaction between the SNP rs174449 and B-0y C14:0 (myristic acid) was observed. This study indicates that Indonesian infants with AD have increased rates of endogenous long-chain polyunsaturated fatty acid production, as well as higher C18:1n-9 levels. GPL-FA measured at birth do not predict later AD incidence; however, genotype interactions reveal novel effects of myristic acid, which are modified by a FADS3 variant.

Original languageEnglish
Article number4676
Issue number21
Publication statusPublished - Nov 2022


  • atopic dermatitis
  • FADS gene variants
  • fatty acids
  • infants
  • metabolism


Dive into the research topics of 'Novel Interactions of Myristic Acid and FADS3 Variants Predict Atopic Dermatitis among Indonesian Infants'. Together they form a unique fingerprint.

Cite this