TY - JOUR
T1 - Nitrogen oxide reduction through absorbent solutions containing nitric acid and hydrogen peroxide in hollow fiber membrane modules
AU - Kartohardjono, Sutrasno
AU - Merry, Clarissa
AU - Rizky, Mohamad Sofwan
AU - Pratita, Catharina Candra
N1 - Publisher Copyright:
© 2019 The Author(s)
PY - 2019/12
Y1 - 2019/12
N2 - Emissions of nitrogen oxides such as NO and NO2, which are commonly known as NOx, are threats to human existence and cause environmental problems. Mainly, two techniques have been developed to drastically reduce these emissions, which are dry and wet processes. The wet process has several advantages, major identifiable advantages are the adaptability to the flue gas, low operating temperatures and no poisoning and inactivation catalyst. Also, a mixture of hydrogen peroxide and nitric acid are used as absorbents solution for NOx reduction in the wet process. The advantages of using this mixture include the ability to reduce the negative effect of NOx and does not contaminate the scrubbing solution. In addition, nitric acid has an economical advantage in the process considering the fact that it is produced in the process. Finally, it can be conducted at ambient temperature. This study furthermore used a mixture of hydrogen peroxide and nitric acid solutions as an absorbent to reduce NOx in hollow fiber membrane modules. The hydrogen peroxide oxidized HNO2 to nitric acid, while enhances the oxidation through an autocatalytic reaction. The effects of the feed gas flow rate, hydrogen peroxide concentrations and number of fibers on the NOx reduction, absorbed NOx and flux were varied to study. The experimental results showed that the increase in the feed gas flow rate from 100 to 200 mL/min decreased NOx reduction from about 98 to 94% but increased the absorbed NOx and flux from about 0.13 to 0.255 mmol/h and 0.85–1.63 mmol/m2.h, respectively The increase in proportion of NOx in the feed gas effect was dominant than the increase in absorbed NOx. An increase in hydrogen peroxide concentration from 0.5 to 10 wt.% in the absorbent solutions increased NOx reduction, absorbed NOx and flux from about 94 to 98%, 0.257–0.267 mmol/h and 1.09–1.13 mmol/m2.h, respectively. Additionally, the H2O2 plays an important role in enhancing HNO2 oxidation to HNO3. Furthermore, an increase in the number of fibers from 50 to 150 in the membrane module increased NOx reduction and absorbed NOx from 86 to 97% and 0.23–0.27 mmol/h. Flux decreased from 2.98 to 1.13 mmol/m2.h due to increment in the gas-liquid contact surface area.
AB - Emissions of nitrogen oxides such as NO and NO2, which are commonly known as NOx, are threats to human existence and cause environmental problems. Mainly, two techniques have been developed to drastically reduce these emissions, which are dry and wet processes. The wet process has several advantages, major identifiable advantages are the adaptability to the flue gas, low operating temperatures and no poisoning and inactivation catalyst. Also, a mixture of hydrogen peroxide and nitric acid are used as absorbents solution for NOx reduction in the wet process. The advantages of using this mixture include the ability to reduce the negative effect of NOx and does not contaminate the scrubbing solution. In addition, nitric acid has an economical advantage in the process considering the fact that it is produced in the process. Finally, it can be conducted at ambient temperature. This study furthermore used a mixture of hydrogen peroxide and nitric acid solutions as an absorbent to reduce NOx in hollow fiber membrane modules. The hydrogen peroxide oxidized HNO2 to nitric acid, while enhances the oxidation through an autocatalytic reaction. The effects of the feed gas flow rate, hydrogen peroxide concentrations and number of fibers on the NOx reduction, absorbed NOx and flux were varied to study. The experimental results showed that the increase in the feed gas flow rate from 100 to 200 mL/min decreased NOx reduction from about 98 to 94% but increased the absorbed NOx and flux from about 0.13 to 0.255 mmol/h and 0.85–1.63 mmol/m2.h, respectively The increase in proportion of NOx in the feed gas effect was dominant than the increase in absorbed NOx. An increase in hydrogen peroxide concentration from 0.5 to 10 wt.% in the absorbent solutions increased NOx reduction, absorbed NOx and flux from about 94 to 98%, 0.257–0.267 mmol/h and 1.09–1.13 mmol/m2.h, respectively. Additionally, the H2O2 plays an important role in enhancing HNO2 oxidation to HNO3. Furthermore, an increase in the number of fibers from 50 to 150 in the membrane module increased NOx reduction and absorbed NOx from 86 to 97% and 0.23–0.27 mmol/h. Flux decreased from 2.98 to 1.13 mmol/m2.h due to increment in the gas-liquid contact surface area.
KW - Chemical engineering
KW - Chemical reaction engineering
KW - Environmental chemical engineering
KW - Hydrogen peroxide
KW - Nitric acid
KW - NOx
KW - Reduction efficiency
KW - Wet method
UR - http://www.scopus.com/inward/record.url?scp=85076121111&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2019.e02987
DO - 10.1016/j.heliyon.2019.e02987
M3 - Article
AN - SCOPUS:85076121111
SN - 2405-8440
VL - 5
JO - Heliyon
JF - Heliyon
IS - 12
M1 - e02987
ER -