TY - JOUR
T1 - Nanocomposite hydrogel-based biopolymer modified with silver nanoparticles as an antibacterial material for wound treatment
AU - Helmiyati,
AU - Novientri, Gissi
AU - Abbas, Gusma Harfiana
AU - Budianto, Emil
N1 - Publisher Copyright:
© 2019 Helmiyati et al.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Authors report the synthesis of sodium alginate-polyvinyl alcohol-g-acrylamide (NaAlg-PVA-g-AAm) nanocomposite hydrogels modified with silver nanoparticles (AgNPs) as an antibacterial agent. In this work, we used NaAlg isolated directly from brown algae and studied the effects of the NaAlg weight ratio and silver-ion concentration on the network matrix in the hydrogels via in situ polymerization. Successfully synthesized nanocomposites were characterized using Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic absorption spectrometry. The best results were achieved with an average AgNPs size of approximately 20 nm allowing the AgNPs to be absorbed in the nanocomposite hydrogel matrix. Nanocomposite hydrogels displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of silver nitrate (AgNO3) for E. coli and S. aureus were 46.251 and 75.220 ppm, respectively. Conversely, the minimum bactericidal concentrations (MBCs) of AgNO3 for these bacteria were 185.004 and 300.880 ppm, respectively. The MBC/MIC ratio of the AgNO3 modified nanocomposite hydrogels was four for both bacteria. The results illustrated that the nanocomposite hydrogels had good antibacterial activity against Gram-positive and Gramnegative bacteria and can be suitable for applications in wound treatments.
AB - Authors report the synthesis of sodium alginate-polyvinyl alcohol-g-acrylamide (NaAlg-PVA-g-AAm) nanocomposite hydrogels modified with silver nanoparticles (AgNPs) as an antibacterial agent. In this work, we used NaAlg isolated directly from brown algae and studied the effects of the NaAlg weight ratio and silver-ion concentration on the network matrix in the hydrogels via in situ polymerization. Successfully synthesized nanocomposites were characterized using Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic absorption spectrometry. The best results were achieved with an average AgNPs size of approximately 20 nm allowing the AgNPs to be absorbed in the nanocomposite hydrogel matrix. Nanocomposite hydrogels displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of silver nitrate (AgNO3) for E. coli and S. aureus were 46.251 and 75.220 ppm, respectively. Conversely, the minimum bactericidal concentrations (MBCs) of AgNO3 for these bacteria were 185.004 and 300.880 ppm, respectively. The MBC/MIC ratio of the AgNO3 modified nanocomposite hydrogels was four for both bacteria. The results illustrated that the nanocomposite hydrogels had good antibacterial activity against Gram-positive and Gramnegative bacteria and can be suitable for applications in wound treatments.
KW - AgNPs
KW - Antibacterial
KW - Hydrogel
KW - Nanocomposite
KW - Sodium alginate
UR - http://www.scopus.com/inward/record.url?scp=85078520026&partnerID=8YFLogxK
U2 - 10.7324/JAPS.2019.91101
DO - 10.7324/JAPS.2019.91101
M3 - Article
AN - SCOPUS:85078520026
SN - 2231-3354
VL - 9
SP - 1
EP - 9
JO - Journal of Applied Pharmaceutical Science
JF - Journal of Applied Pharmaceutical Science
IS - 11
ER -