@inproceedings{01d490d01be244daa6a32a7444ff87da,
title = "Nanocarbon production from polyethylene (PE) plastic bag waste using flame synthesis reactor",
abstract = "In Indonesia, more than 26 thousand tons of polyethylene (PE) packaging plastic bags are disposed of into the environment per day. Nanocarbon technology is one solution. Flame synthesis reactor is a method for nanocarbon production. Flame synthesis using argon as a carrier gas and oxygen gas as co-feed gas to produce carbon monoxide (CO) as a source of precursors for the growth of nanocarbon. Oxygen as a co-feed were injected in this reactor for increasing CO. Stainless steel (SS304) is used as a substrate of catalytic media at a temperature of 800°C for 1 hour. Nanocarbon characterized by FTIR, TEM, and XRD. The result of the optimum conditions in pyrolisis of plastic bag waste was obtained at a temperature of 450°C in 10 minutes. The perfomance of flame synthesis reactor showed that carbon nanotubes, onion holow core, quasi-spherical are dominated of nanocarbon with 30% yield. This shows that the flame synthesis reactor is capable for producing CNT nanocarbon based on PE plastic bag waste. ",
author = "Wulan, {Praswasti P.D.K.} and Chairat, {M. I.} and Kusumastuti, {R. F.}",
note = "Publisher Copyright: {\textcopyright} 2020 Author(s).; 4th International Tropical Renewable Energy Conference 2019, i-TREC 2019 ; Conference date: 14-08-2019 Through 16-08-2019",
year = "2020",
month = sep,
day = "3",
doi = "10.1063/5.0014086",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Eny Kusrini and Nugraha, {I. Gde Dharma}",
booktitle = "4th International Tropical Renewable Energy Conference, i-TREC 2019",
address = "United States",
}