Naïve Bayes Classifier Models for Predicting the Colon Cancer

Nafizatus Salmi, Zuherman Rustam

Research output: Contribution to journalConference articlepeer-review

77 Citations (Scopus)

Abstract

Cancer has been known as a disease consisting of several different types. Cancer is a life threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer. Colon cancer is one of the number one killers in the world. However, because there isn't any obvious symptom of colon cancer at an early stage, people do not realize that they suffer from it. Even though cancer formation is different for each type of cancer, it is still a big challenge to make cancer classification with good accuracy. Many machine learning has been applied to the data of human's genes in order to get the most relevant genes in the classification of cancer. The author proposes the Naïve Bayes Classifier model as a classification method to show that the model has good accuracy, good precision, good recall, good f 1 - score in classifying the data of patients suffering from colon cancer or not. In this proposed model, Naïve Bayes Classifier is a technique prediction based on simple probabilistic and on the application of the Bayes theorem (or Bayes rule) with a strong independence assumption. Therefore, this model is able to make higher classification accuracy with less complexity. In particular, it achieves up to 95.24% classification accuracy, thus this model can be an efficient analysis tool.

Original languageEnglish
Article number052068
JournalIOP Conference Series: Materials Science and Engineering
Volume546
Issue number5
DOIs
Publication statusPublished - 1 Jul 2019
Event9th Annual Basic Science International Conference 2019, BaSIC 2019 - Malang, Indonesia
Duration: 20 Mar 201921 Mar 2019

Fingerprint

Dive into the research topics of 'Naïve Bayes Classifier Models for Predicting the Colon Cancer'. Together they form a unique fingerprint.

Cite this