TY - JOUR
T1 - Naïve Bayes Classifier Models for Predicting the Colon Cancer
AU - Salmi, Nafizatus
AU - Rustam, Zuherman
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Cancer has been known as a disease consisting of several different types. Cancer is a life threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer. Colon cancer is one of the number one killers in the world. However, because there isn't any obvious symptom of colon cancer at an early stage, people do not realize that they suffer from it. Even though cancer formation is different for each type of cancer, it is still a big challenge to make cancer classification with good accuracy. Many machine learning has been applied to the data of human's genes in order to get the most relevant genes in the classification of cancer. The author proposes the Naïve Bayes Classifier model as a classification method to show that the model has good accuracy, good precision, good recall, good f 1 - score in classifying the data of patients suffering from colon cancer or not. In this proposed model, Naïve Bayes Classifier is a technique prediction based on simple probabilistic and on the application of the Bayes theorem (or Bayes rule) with a strong independence assumption. Therefore, this model is able to make higher classification accuracy with less complexity. In particular, it achieves up to 95.24% classification accuracy, thus this model can be an efficient analysis tool.
AB - Cancer has been known as a disease consisting of several different types. Cancer is a life threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer. Colon cancer is one of the number one killers in the world. However, because there isn't any obvious symptom of colon cancer at an early stage, people do not realize that they suffer from it. Even though cancer formation is different for each type of cancer, it is still a big challenge to make cancer classification with good accuracy. Many machine learning has been applied to the data of human's genes in order to get the most relevant genes in the classification of cancer. The author proposes the Naïve Bayes Classifier model as a classification method to show that the model has good accuracy, good precision, good recall, good f 1 - score in classifying the data of patients suffering from colon cancer or not. In this proposed model, Naïve Bayes Classifier is a technique prediction based on simple probabilistic and on the application of the Bayes theorem (or Bayes rule) with a strong independence assumption. Therefore, this model is able to make higher classification accuracy with less complexity. In particular, it achieves up to 95.24% classification accuracy, thus this model can be an efficient analysis tool.
UR - http://www.scopus.com/inward/record.url?scp=85069509327&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/546/5/052068
DO - 10.1088/1757-899X/546/5/052068
M3 - Conference article
AN - SCOPUS:85069509327
SN - 1757-8981
VL - 546
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 5
M1 - 052068
T2 - 9th Annual Basic Science International Conference 2019, BaSIC 2019
Y2 - 20 March 2019 through 21 March 2019
ER -