TY - JOUR
T1 - Multiclass classification of leukemia cancer data using Fuzzy Support Vector Machine (FSVM) with feature selection using Principal Component Analysis (PCA)
AU - Fauzi, I. R.
AU - Rustam, Z.
AU - Wibowo, A.
N1 - Publisher Copyright:
© 2021 Journal of Physics: Conference Series.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/12
Y1 - 2021/1/12
N2 - Cancer is the second leading cause of death globally. According to WHO prediction (2015) cases of cancer deaths will increase to 21.6 million cases by 2030. Therefore, early detection of cancer is necessary to avoid the spread of cancer and machine learning is required to increase performance in the detection of cancer. In general, microarray cancer data consist of many features. However, there are several features in cancer data that did not have important information in classification cancer. Therefore, these features will be summarized from several features under some common underlying factors into fewer components using the Principal Component Analysis (PCA) method. Then, we select the most features who have important information for classification cancer. This paper focuses on the comparison of using and without the PCA method on cancer data coupled with the Fuzzy Support Vectors Machines (FSVM) method for cancer classification. The experimental results, without the PCA method on cancer data coupled with the FSVM method for cancer classification the accuracy is 87.69 % and by using the PCA method on cancer data coupled with the FSVM method for cancer classification the accuracy is 96.92 % (obtained by using 60 features).
AB - Cancer is the second leading cause of death globally. According to WHO prediction (2015) cases of cancer deaths will increase to 21.6 million cases by 2030. Therefore, early detection of cancer is necessary to avoid the spread of cancer and machine learning is required to increase performance in the detection of cancer. In general, microarray cancer data consist of many features. However, there are several features in cancer data that did not have important information in classification cancer. Therefore, these features will be summarized from several features under some common underlying factors into fewer components using the Principal Component Analysis (PCA) method. Then, we select the most features who have important information for classification cancer. This paper focuses on the comparison of using and without the PCA method on cancer data coupled with the Fuzzy Support Vectors Machines (FSVM) method for cancer classification. The experimental results, without the PCA method on cancer data coupled with the FSVM method for cancer classification the accuracy is 87.69 % and by using the PCA method on cancer data coupled with the FSVM method for cancer classification the accuracy is 96.92 % (obtained by using 60 features).
KW - Cancer
KW - Classification
KW - Fuzzy support vector machines
KW - Principal component analysis
UR - http://www.scopus.com/inward/record.url?scp=85100762829&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1725/1/012012
DO - 10.1088/1742-6596/1725/1/012012
M3 - Conference article
AN - SCOPUS:85100762829
SN - 1742-6588
VL - 1725
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012012
T2 - 2nd Basic and Applied Sciences Interdisciplinary Conference 2018, BASIC 2018
Y2 - 3 August 2018 through 4 August 2018
ER -