Monitoring the Distribution of Mangrove Area using Synthetic Aperture Radar (SAR) and Optic Remote Sensing Data Fusion based on Deep Learning in Kotabaru Regency, Indonesia

Dodi Sudiana, Jamilatun Nisa, Mia Rizkinia, Ratih Dewanti Dimyati, Nanin Anggraini, Indra Riyanto, Anton Satria Prabuwono, Josaphat Tetuko Sri Sumantyo

Research output: Contribution to journalArticlepeer-review

Abstract

Mangrove plants are crucial in providing ecosystem benefits that align with the Sustainable Development Goals (SDGs), particularly regarding climate regulation (SDG 13), due to their efficient carbon storage capabilities. Ensuring the preservation and effective management of this valuable natural resource requires precise mapping and monitoring systems. While mapping techniques using optical and radar remote sensing data have been utilized for monitoring mangrove areas, traditional methods for detecting mangrove damage face limitations concerning accuracy, efficiency, and automation. This research records a novel approach to mapping and monitoring mangrove ecosystems in Kotabaru Regency, South Kalimantan, from 2017 to 2021, using a fusion of Sentinel-1 and Sentinel-2 remote sensing satellite imagery data. The study demonstrates that the optimal combination of single-date Sentinel-1 and Sentinel-2 image inputs for mangrove identification in the deep learning model involves fusing Sentinel-2's original five-band data (Red, Green, Blue, NIR, and SWIR-1), four multispectral indices (FDI, MDI, MNDWI, and WFI), and Sentinel-1 SAR data (VV and VH). This fusion yields impressive performance metrics, including Overall Accuracy (OA) of 95.60%, Intersection over Union (IoU) of 93.09%, and F1-Score of 96.42%. Furthermore, the proposed optimal combination is utilized in this study to analyze the spatial-temporal dynamics of mangrove habitats in the study area every year from 2017 to 2021. The results reveal that the largest mangrove area in the study region was recorded as 8,240.06 hectares in 2019, while the smallest area was 7,069.68 hectares in 2020. This study demonstrates the potential of the proposed method as a valuable tool for accurate and efficient mangrove monitoring, providing critical information for effective conservation and management efforts.

Original languageEnglish
Pages (from-to)536-546
Number of pages11
JournalEvergreen
Volume11
Issue number1
Publication statusPublished - Mar 2024

Keywords

  • deep learning
  • image fusion
  • mangrove monitoring
  • Sentinel-1
  • Sentinel-2
  • Synthetic Aperture Radar (SAR)

Fingerprint

Dive into the research topics of 'Monitoring the Distribution of Mangrove Area using Synthetic Aperture Radar (SAR) and Optic Remote Sensing Data Fusion based on Deep Learning in Kotabaru Regency, Indonesia'. Together they form a unique fingerprint.

Cite this