TY - JOUR
T1 - Molecular mechanism elucidation of Ocimum basilicum as anticancer using system bioinformatic approach supported by in vitro assay
AU - Agustini, Kurnia
AU - Sangande, Frangky
AU - Nuralih, Nuralih
AU - Harahap, Armansyah Maulana
AU - Ningsih, Sri
AU - Bahtiar, Anton
N1 - Publisher Copyright:
© Agustini K et al.
PY - 2024
Y1 - 2024
N2 - Breast cancer (BC) is a multifactorial disease involving many pathways and target molecules. Multi-target therapy through multi-compound herbal medicines is an alternative strategy to treat BC. In the present study, we elucidate the molecular mechanism of Ocimum basilicum (OB) as an anticancer agent using system bioinformatic approach and investigate its cytotoxic effect against MCF-7 cells. We performed network pharmacology (NP) and molecular docking studies to provide scientific information regarding the underlying anti-BC mechanism of OB. Based on topology parameters obtained from protein-protein interaction (PPI), we identified six potential targets that play a significant role in the network including SRC, PI3KCA, EGFR, ESR1, AKT1, and MAPK1. Furthermore, consensus docking suggested rutin, quercetin-3-O-diglucoside, and kaempferol-3-O-β-D-rutinoside as the potential compounds of OB. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the cytotoxic effect of OB might be related to the modulation of several pathways such as PI3K-Akt, VEGF, and HIF-1, breast cancer, and estrogen signaling pathways. The in vitro assay revealed that various extracts of OB demonstrated cytotoxic effects against MCF-7 with IC50 = 231 µg/mL (OB ethanolic extract), 408 µg/mL (OB methanolic extract), 479 µg/mL (OB ethyl acetate extract), 1887 µg/mL (OB n-hexanoic extract) and 767 µg/mL (OB butanolic extract) respectively.
AB - Breast cancer (BC) is a multifactorial disease involving many pathways and target molecules. Multi-target therapy through multi-compound herbal medicines is an alternative strategy to treat BC. In the present study, we elucidate the molecular mechanism of Ocimum basilicum (OB) as an anticancer agent using system bioinformatic approach and investigate its cytotoxic effect against MCF-7 cells. We performed network pharmacology (NP) and molecular docking studies to provide scientific information regarding the underlying anti-BC mechanism of OB. Based on topology parameters obtained from protein-protein interaction (PPI), we identified six potential targets that play a significant role in the network including SRC, PI3KCA, EGFR, ESR1, AKT1, and MAPK1. Furthermore, consensus docking suggested rutin, quercetin-3-O-diglucoside, and kaempferol-3-O-β-D-rutinoside as the potential compounds of OB. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the cytotoxic effect of OB might be related to the modulation of several pathways such as PI3K-Akt, VEGF, and HIF-1, breast cancer, and estrogen signaling pathways. The in vitro assay revealed that various extracts of OB demonstrated cytotoxic effects against MCF-7 with IC50 = 231 µg/mL (OB ethanolic extract), 408 µg/mL (OB methanolic extract), 479 µg/mL (OB ethyl acetate extract), 1887 µg/mL (OB n-hexanoic extract) and 767 µg/mL (OB butanolic extract) respectively.
KW - Cytotoxicity
KW - MCF-7 cells
KW - Molecular Docking
KW - Network Pharmacology
KW - Ocimum basilicum
UR - http://www.scopus.com/inward/record.url?scp=85200733095&partnerID=8YFLogxK
U2 - 10.3897/PHARMACIA.71.E127395
DO - 10.3897/PHARMACIA.71.E127395
M3 - Article
AN - SCOPUS:85200733095
SN - 0428-0296
VL - 71
SP - 1
EP - 12
JO - Pharmacia
JF - Pharmacia
ER -