TY - JOUR
T1 - Modified Mesenchymal stem cell, platelet-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis
T2 - A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches
AU - Tjandra, Kevin Christian
AU - Novriansyah, Robin
AU - Sudiasa, I. Nyoman Sebastian
AU - Ar, Ardiyana
AU - Rahmawati, Nurul Azizah Dian
AU - Dilogo, Ismail Hadisoebroto
N1 - Publisher Copyright:
© 2024 Tjandra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/3
Y1 - 2024/3
N2 - Background Mesenchymal stem cells (MSCs) hold promise for osteoarthritis (OA) treatment, potentially enhanced by combining them with platelet-rich plasma (PRP) and hyaluronic acid (HA). This study aimed to assess the synergy of MSCs, PRP, and varying HA doses, and determine optimal MSC sources to treat early-stage OA in the perspective of Lysholm score, VAS Score, KSS score, and WOMAC score. Method Original articles from 2013 to 2023 were screened from four databases, focusing on clinical trials and randomized controlled trials. The Risk of Bias in Non-randomized Studies-of Interventions (ROB-2) tool evaluated bias, and a PICOS criteria table guided result construction. Revman 5.4 analyzed outcomes such as Lysholm score, VAS score, KSS, WOMAC score, cartilage volume, and defect size using MRI. This systematic review adhered to PRISMA guidelines. Result Nine studies met the final inclusion criteria. Meta-analysis revealed a significant improvement in Lysholm score (MD: 17.89; 95% CI: 16.01, 19.77; I2 = 0%, P = 0.56), a notable reduction in VAS score (MD: -2.62; 95% CI: -2.83, -2.41; I2 = 99%, P < 0.00001), elevated KSS (MD: 29.59; 95% CI: 27.66, 31.52; I2 = 95%, P < 0.0001), and reduced WOMAC score (MD: -12.38; 95% CI: -13.75, -11.01; I2 = 99%, P < 0.0001). Conclusions Arthroscopic guided high-dose subchondral application of primary cultured synovial MSCs in popliteal PRP media with HA effectively regenerates cartilage defects and improves clinical outcomes in early-stage osteoarthritis. Clarification of MSC sources and quantities enhances the understanding of this promising treatment modality.
AB - Background Mesenchymal stem cells (MSCs) hold promise for osteoarthritis (OA) treatment, potentially enhanced by combining them with platelet-rich plasma (PRP) and hyaluronic acid (HA). This study aimed to assess the synergy of MSCs, PRP, and varying HA doses, and determine optimal MSC sources to treat early-stage OA in the perspective of Lysholm score, VAS Score, KSS score, and WOMAC score. Method Original articles from 2013 to 2023 were screened from four databases, focusing on clinical trials and randomized controlled trials. The Risk of Bias in Non-randomized Studies-of Interventions (ROB-2) tool evaluated bias, and a PICOS criteria table guided result construction. Revman 5.4 analyzed outcomes such as Lysholm score, VAS score, KSS, WOMAC score, cartilage volume, and defect size using MRI. This systematic review adhered to PRISMA guidelines. Result Nine studies met the final inclusion criteria. Meta-analysis revealed a significant improvement in Lysholm score (MD: 17.89; 95% CI: 16.01, 19.77; I2 = 0%, P = 0.56), a notable reduction in VAS score (MD: -2.62; 95% CI: -2.83, -2.41; I2 = 99%, P < 0.00001), elevated KSS (MD: 29.59; 95% CI: 27.66, 31.52; I2 = 95%, P < 0.0001), and reduced WOMAC score (MD: -12.38; 95% CI: -13.75, -11.01; I2 = 99%, P < 0.0001). Conclusions Arthroscopic guided high-dose subchondral application of primary cultured synovial MSCs in popliteal PRP media with HA effectively regenerates cartilage defects and improves clinical outcomes in early-stage osteoarthritis. Clarification of MSC sources and quantities enhances the understanding of this promising treatment modality.
UR - http://www.scopus.com/inward/record.url?scp=85187508316&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0295876
DO - 10.1371/journal.pone.0295876
M3 - Article
C2 - 38457479
AN - SCOPUS:85187508316
SN - 1932-6203
VL - 19
JO - PloS one
JF - PloS one
IS - 3 March
M1 - e0295876
ER -