TY - JOUR
T1 - Modification of hydrothermally synthesized α-Fe2O3 nanorods with g-C3N4 prepared from various precursors as photoanodes for hydrogen production
AU - Ibadurrohman, Muhammad
AU - Ainin, Afaf Qurrotu
AU - Alam, Fakhri Zinul
AU - Mumtazah, Nadia
AU - Slamet, None
AU - Ferdiansyah Madsuha, Alfian
AU - Ulum, Reza Miftahul
AU - Hasiholan, Bonavian
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - This report addresses the synthesis, characterisation, and photoelectrochemical performances of α-Fe2O3 nanorods decorated with g-C3N4. Photoanode composites were fabricated in a two-step procedure in which fluorine-doped tin oxide (FTO) glass was coated with α-Fe2O3 nanorods via a hydrothermal method, followed by incorporation of g-C3N4via a wet-impregnation method. In particular, the study investigates the effects of precursors of g-C3N4 (urea, dicyandiamide, and melamine) on the photoelectrochemical properties of the prepared α-Fe2O3/g-C3N4 films. The films were thoroughly analysed by means of X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy, and UV-vis spectrometry. The highest photoelectrochemical output of the nanorod composite films was achieved with the use of g-C3N4 synthesized from urea, generating 15.3 μA cm−2 of photocurrent density as a result of better charge transfer driven by the formation of a semiconductor heterojunction. This is a staggering 12-fold improvement compared to the unmodified hematite nanorods which managed to only produce 1.2 μA cm−2 of photocurrent density. The merits of g-C3N4 prepared from urea as the best semiconductor couple for α-Fe2O3 are driven by its unique crystallinity and morphology with significantly larger surface area than g-C3N4 prepared from other precursors. The addition of glycerol as a sacrificial agent further improves the photocurrent to ca. 24 μA cm−2. The findings in this study show the potential of α-Fe2O3/g-C3N4 composites for sustainable photoelectrochemical hydrogen production.
AB - This report addresses the synthesis, characterisation, and photoelectrochemical performances of α-Fe2O3 nanorods decorated with g-C3N4. Photoanode composites were fabricated in a two-step procedure in which fluorine-doped tin oxide (FTO) glass was coated with α-Fe2O3 nanorods via a hydrothermal method, followed by incorporation of g-C3N4via a wet-impregnation method. In particular, the study investigates the effects of precursors of g-C3N4 (urea, dicyandiamide, and melamine) on the photoelectrochemical properties of the prepared α-Fe2O3/g-C3N4 films. The films were thoroughly analysed by means of X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy, and UV-vis spectrometry. The highest photoelectrochemical output of the nanorod composite films was achieved with the use of g-C3N4 synthesized from urea, generating 15.3 μA cm−2 of photocurrent density as a result of better charge transfer driven by the formation of a semiconductor heterojunction. This is a staggering 12-fold improvement compared to the unmodified hematite nanorods which managed to only produce 1.2 μA cm−2 of photocurrent density. The merits of g-C3N4 prepared from urea as the best semiconductor couple for α-Fe2O3 are driven by its unique crystallinity and morphology with significantly larger surface area than g-C3N4 prepared from other precursors. The addition of glycerol as a sacrificial agent further improves the photocurrent to ca. 24 μA cm−2. The findings in this study show the potential of α-Fe2O3/g-C3N4 composites for sustainable photoelectrochemical hydrogen production.
UR - http://www.scopus.com/inward/record.url?scp=85200643027&partnerID=8YFLogxK
U2 - 10.1039/d3nj05421g
DO - 10.1039/d3nj05421g
M3 - Article
AN - SCOPUS:85200643027
SN - 1144-0546
VL - 48
SP - 14746
EP - 14756
JO - New Journal of Chemistry
JF - New Journal of Chemistry
IS - 33
ER -