TY - JOUR
T1 - Modification of boron-doped diamond electrodes with platinum-iridium for carbon dioxide electroreduction
AU - Atriardi, S. R.
AU - Dewandaru, R. K.P.
AU - Gunlazuardi, J.
AU - Ivandini, T. A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/2/22
Y1 - 2019/2/22
N2 - Boron-doped diamond (BDD) is reportedly a good electrode material for the electroreduction of CO2 to produce formaldehyde with high Faradaic efficiency. In this study, BDD electrodes were modified with a platinum-iridium composite (Pt-Ir). Deposition of Pt-Ir on the surface of BDD was performed by two different methods. One method involved the modification of the BDD surface, wherein terminal-H atoms were substituted with N atoms. The N-terminal BDD was then immersed in a Pt-Ir nanoparticle solution to form Pt-Ir-BDD (1). The Pt-Ir nanoparticles were synthesized from a 3:4 molar ratio mixture of H2PtCl6 and K2IrCl6 by a hydrothermal method. Characterization of Pt-Ir nanoparticles by using UV-Vis spectrophotometry and Transmission Electron Microscopy (TEM) image showed an absorbance peak at 420 nm with an average particle size of 2.6±0.6 nm. In the second method, Pt-Ir was deposited onto BDD using chemically assisted electrodeposition by applying a reduction potential of -0.5 V (vs. Ag/AgCl) to form Pt-Ir-BDD (2). Scanning Electron Microscope (SEM) images showed that the second method provides better distribution of Pt-Ir on the BDD surface. Furthermore, cyclic voltammetry of CO2, dissolved in 0.1 M NaCl showed a reduction potentials at -1.7, -1.3, and -1.2 V (vs. Ag/AgCl) at BDD, Pt-Ir-BDD (1) and Pt- Ir-BDD (2), respectively, indicating that modification with Pt-Ir allows the conversion of CO2 with higher Faradaic efficiency.
AB - Boron-doped diamond (BDD) is reportedly a good electrode material for the electroreduction of CO2 to produce formaldehyde with high Faradaic efficiency. In this study, BDD electrodes were modified with a platinum-iridium composite (Pt-Ir). Deposition of Pt-Ir on the surface of BDD was performed by two different methods. One method involved the modification of the BDD surface, wherein terminal-H atoms were substituted with N atoms. The N-terminal BDD was then immersed in a Pt-Ir nanoparticle solution to form Pt-Ir-BDD (1). The Pt-Ir nanoparticles were synthesized from a 3:4 molar ratio mixture of H2PtCl6 and K2IrCl6 by a hydrothermal method. Characterization of Pt-Ir nanoparticles by using UV-Vis spectrophotometry and Transmission Electron Microscopy (TEM) image showed an absorbance peak at 420 nm with an average particle size of 2.6±0.6 nm. In the second method, Pt-Ir was deposited onto BDD using chemically assisted electrodeposition by applying a reduction potential of -0.5 V (vs. Ag/AgCl) to form Pt-Ir-BDD (2). Scanning Electron Microscope (SEM) images showed that the second method provides better distribution of Pt-Ir on the BDD surface. Furthermore, cyclic voltammetry of CO2, dissolved in 0.1 M NaCl showed a reduction potentials at -1.7, -1.3, and -1.2 V (vs. Ag/AgCl) at BDD, Pt-Ir-BDD (1) and Pt- Ir-BDD (2), respectively, indicating that modification with Pt-Ir allows the conversion of CO2 with higher Faradaic efficiency.
KW - Boron-doped diamond
KW - COelectroreduction
KW - iridium, platinum
KW - surface modification
UR - http://www.scopus.com/inward/record.url?scp=85066886681&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/496/1/012040
DO - 10.1088/1757-899X/496/1/012040
M3 - Conference article
AN - SCOPUS:85066886681
SN - 1757-8981
VL - 496
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012040
T2 - 2nd International Conference on Current Progress in Functional Materials 2017, ISCPFM 2017
Y2 - 8 November 2017 through 9 November 2017
ER -