TY - JOUR
T1 - Modeling of Storm Water Management to Synergize Sustainable Development Goals 6, 9, and 11 Framework
AU - Annisa, Bismi
AU - Maknun, Imam Jauhari
N1 - Publisher Copyright:
© (2024), (Faculty of Engineering). All Rights Reserved.
PY - 2024
Y1 - 2024
N2 - Inundation and flooding are problems that often occur in many cities worldwide, including university campuses. This research aims to examine the existing drainage conditions on the Universitas Islam Riau (UIR) campus and identify solutions to overcome inundation and flooding that probably occur on the UIR campus in extreme conditions. The method in this study uses the EPA's SWMM (Storm Water Management Model) 5.2 software simulation program. The results indicate that the current drainage system is unable to handle rain discharge during extreme conditions. In this study, three improvements are set up to analyze hydrological characteristics. The first improvement is the traditional improvement by changing the existing channel dimensions. The second improvement is using Low Impact Development (LID) technology, in which the combination of 14 infiltration wells and 7 Biopore Infiltration Holeare applied. The third improvement is using the combination of 3 LID: Infiltration well, Biopore infiltration Hole, and Rain Water Harvesting (RWH). From the results, runoff in the improvement one was reduced by 21.5%. The second improvement, where 2 LID was used, reduced the runoff by 51.5%; finally, the third improvement reduced the runoff by 57.6%. So, the scenario that is most effective in overcoming inundation or flooding is the third scenario. Furthermore, the improvement is in line with the water conservation strategy. The findings of this research can serve as a valuable resource for future studies, contributing to the advancement of SDGs 6, 9, and 11, specifically targeting better water management, resilient infrastructures, and sustainable cities and communities. Moreover, the result can be a guide for the decision maker, especially on the UIR Campus and Campus worldwide, as an effective strategy for water conservation and to prevent flooding in similar universities.
AB - Inundation and flooding are problems that often occur in many cities worldwide, including university campuses. This research aims to examine the existing drainage conditions on the Universitas Islam Riau (UIR) campus and identify solutions to overcome inundation and flooding that probably occur on the UIR campus in extreme conditions. The method in this study uses the EPA's SWMM (Storm Water Management Model) 5.2 software simulation program. The results indicate that the current drainage system is unable to handle rain discharge during extreme conditions. In this study, three improvements are set up to analyze hydrological characteristics. The first improvement is the traditional improvement by changing the existing channel dimensions. The second improvement is using Low Impact Development (LID) technology, in which the combination of 14 infiltration wells and 7 Biopore Infiltration Holeare applied. The third improvement is using the combination of 3 LID: Infiltration well, Biopore infiltration Hole, and Rain Water Harvesting (RWH). From the results, runoff in the improvement one was reduced by 21.5%. The second improvement, where 2 LID was used, reduced the runoff by 51.5%; finally, the third improvement reduced the runoff by 57.6%. So, the scenario that is most effective in overcoming inundation or flooding is the third scenario. Furthermore, the improvement is in line with the water conservation strategy. The findings of this research can serve as a valuable resource for future studies, contributing to the advancement of SDGs 6, 9, and 11, specifically targeting better water management, resilient infrastructures, and sustainable cities and communities. Moreover, the result can be a guide for the decision maker, especially on the UIR Campus and Campus worldwide, as an effective strategy for water conservation and to prevent flooding in similar universities.
KW - Biopore infiltration holes
KW - Flood management
KW - Infiltration wells
KW - Rainwater harvesting
KW - Sustainable Development Goals (SDGs)
UR - http://www.scopus.com/inward/record.url?scp=85193500044&partnerID=8YFLogxK
U2 - 10.14716/IJTECH.V15I2.6700
DO - 10.14716/IJTECH.V15I2.6700
M3 - Article
AN - SCOPUS:85193500044
SN - 2086-9614
VL - 15
SP - 299
EP - 309
JO - International Journal of Technology
JF - International Journal of Technology
IS - 2
ER -