Abstract
Nitrous oxide (N2O) is mostly emitted from various industrial processes and agricultural activities. This gas causes serious environmental problems and is considered as a dangerous pollutant. In the past, traditional control technologies, such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR), were applied to control N2O emissions in some industries. However, these two processes required high temperatures and the use of catalysts. Economic and technical constraints in SCR and SNCR methods motivated researchers to develop new, cost-effective processes to remove N2O. Biofiltration is an emerging technology that offers a number of advantages over traditional methods of air pollution control. The purpose of this research is to modelise the biofiltration experimental results into the Langmuir adsorption model. This research is conducted in laboratory scale biofilter column, with parameters studied are effect of biofilter length and N2O gas flowrate. The result of the model is simulated into sensitivity analysis. The average Langmuir constant obtained in the model of the research is 16.006 liter/mol.
Original language | Indonesian |
---|---|
Journal | Reaktor |
Publication status | Published - Jun 2011 |