Abstract
Modification of local bamboo-based catalytic activated carbon with metallic Ag can produce mesopore and micropore types, with a mesopore content of 86%. One of the best ways to reduce formaldehyde concentrations is through catalytic adsorption. In combination with Ag nanoparticle catalyst, formaldehyde adsorption capacity is improved. Adsorption and oxidation reaction experiments are performed in a fixed bed column (di = 10 mm, length = 90 mm). The increase in formaldehyde adsorption associated with the reaction rate of formaldehyde oxidation by metallic Ag is 51 g/mmol. The oxidation reaction of Ag nanoparticles is a bimolecular reaction based on the Langmuir–Hinshelwood mechanism. Formaldehyde can be reduced by 59% and 41% through the role of adsorption and support of catalytic oxidation, respectively. Additionally, harmless gases such as CO2 and H2O are produced within the column.
Original language | English |
---|---|
Article number | e22294 |
Journal | Environmental Quality Management |
Volume | 34 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Sept 2024 |
Keywords
- Ag nanoparticle
- Dendrocalamus asper
- fixed-bed column
- formaldehyde
- micropore