TY - JOUR
T1 - Material Characteristics and Electrical Performance of Perovskite Solar Cells with Different Carbon-Based Electrodes Mixed with CuSCN
AU - Barruna, Elang
AU - Saniah, Atya
AU - Rahman, Siti Fauziyah
AU - Poespawati, Nji Raden
N1 - Publisher Copyright:
© 2023 Elang Barruna et al.
PY - 2023
Y1 - 2023
N2 - Perovskite solar cells are the most cutting-edge photovoltaic technology having high efficiency and short fabrication time. In recent decades, there has been a significant rise in the study of the usage of carbon materials in perovskite solar cells because of low cost and earth abundance. Several studies have been conducted to mix hole transport materials with carbon materials to improve the hole extraction capability. Nevertheless, no research has reported using CuSCN on different carbon electrodes on perovskite solar cells. In this research, various carbon materials, including carbon nanotubes (CNT), graphite, activated carbon, and reduced graphene oxide (rGO), are mixed with CuSCN. The carbon materials and CuSCN were mixed by ball mill and then deposited using the doctor blading method to become an electrode layer. The existence of CuSCN in carbon materials was proved by conducting the energy dispersive X-ray test. CNT mixed with CuSCN material exhibits the highest electrical conductivity indicated by ID/IG ratio of 1.22 using Raman spectroscopy. Perovskite solar cell with a mix of CNT and CuSCN electrode exhibits the lowest series resistance of 76.69 Ω, resulting in the optimum solar cell performance such as a short-circuit current density (JSC) of 0.199 mA/cm2, open-circuit voltage (VOC) of 0.52 V, fill-factor (FF) of 0.369, and efficiency of 0.0735.
AB - Perovskite solar cells are the most cutting-edge photovoltaic technology having high efficiency and short fabrication time. In recent decades, there has been a significant rise in the study of the usage of carbon materials in perovskite solar cells because of low cost and earth abundance. Several studies have been conducted to mix hole transport materials with carbon materials to improve the hole extraction capability. Nevertheless, no research has reported using CuSCN on different carbon electrodes on perovskite solar cells. In this research, various carbon materials, including carbon nanotubes (CNT), graphite, activated carbon, and reduced graphene oxide (rGO), are mixed with CuSCN. The carbon materials and CuSCN were mixed by ball mill and then deposited using the doctor blading method to become an electrode layer. The existence of CuSCN in carbon materials was proved by conducting the energy dispersive X-ray test. CNT mixed with CuSCN material exhibits the highest electrical conductivity indicated by ID/IG ratio of 1.22 using Raman spectroscopy. Perovskite solar cell with a mix of CNT and CuSCN electrode exhibits the lowest series resistance of 76.69 Ω, resulting in the optimum solar cell performance such as a short-circuit current density (JSC) of 0.199 mA/cm2, open-circuit voltage (VOC) of 0.52 V, fill-factor (FF) of 0.369, and efficiency of 0.0735.
UR - http://www.scopus.com/inward/record.url?scp=85166021730&partnerID=8YFLogxK
U2 - 10.1155/2023/8931693
DO - 10.1155/2023/8931693
M3 - Article
AN - SCOPUS:85166021730
SN - 2090-0147
VL - 2023
JO - Journal of Electrical and Computer Engineering
JF - Journal of Electrical and Computer Engineering
M1 - 8931693
ER -