TY - JOUR
T1 - KOPYOR COCONUT DETECTION USING SOUND-BASED DYNAMIC TIME WARPING METHOD
AU - Nugroho, Firman Ady
PY - 2019
Y1 - 2019
N2 - Kopyor coconut is a coconut that has genetic abnormalities which cause the coconut meat to have a unique texture and is detached from the coconut shell. Its uniqueness attracts many enthusiasts resulting in a high economic value, 4-5 times that of the ordinary coconut. From its external appearance, kopyor coconut does not differ with ordinary coconut and this poses a challenge in the detection stage. To date, both farmers and sellers use a traditional approach by listening to the sound of whisk from kopyor coconut to detect them. Unfortunately, this approach relies heavily on experience and expertise of the person. Therefore, a new detection approach is proposed based on sound recognition using Mel Frequency Cepstrum Coefficient (MFCC) as the method for feature extraction and Dynamic Time Warping (DTW) as the method for feature matching. Objects that will be detected are kopyor coconuts and ordinary coconut which has grown mature. By implementing both methods, a program has been developed to detect kopyor coconut with an accuracy of 93.8%.
AB - Kopyor coconut is a coconut that has genetic abnormalities which cause the coconut meat to have a unique texture and is detached from the coconut shell. Its uniqueness attracts many enthusiasts resulting in a high economic value, 4-5 times that of the ordinary coconut. From its external appearance, kopyor coconut does not differ with ordinary coconut and this poses a challenge in the detection stage. To date, both farmers and sellers use a traditional approach by listening to the sound of whisk from kopyor coconut to detect them. Unfortunately, this approach relies heavily on experience and expertise of the person. Therefore, a new detection approach is proposed based on sound recognition using Mel Frequency Cepstrum Coefficient (MFCC) as the method for feature extraction and Dynamic Time Warping (DTW) as the method for feature matching. Objects that will be detected are kopyor coconuts and ordinary coconut which has grown mature. By implementing both methods, a program has been developed to detect kopyor coconut with an accuracy of 93.8%.
M3 - Article
SN - 2088-7051
JO - Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
JF - Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
ER -