TY - JOUR
T1 - Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and Their Effect on interleukin-6 expression as a potential anti-inflammatory agent
AU - Emmanuela, Natasya
AU - Muhammad, Daisy Ramadhani
AU - Iriawati,
AU - Wijaya, Christofora Hanny
AU - Ratnadewi, Yuliana Maria Diah
AU - Takemori, Hiroshi
AU - Ana, Ika Dewi
AU - Yuniati, Ratna
AU - Handayani, Windri
AU - Wungu, Triati Dewi Kencana
AU - Tabata, Yasuhiko
AU - Barlian, Anggraini
N1 - Publisher Copyright:
Copyright: © 2024 Emmanuela et al.
PY - 2024/1
Y1 - 2024/1
N2 - Inflammation is a temporary response of the immune system that can be treated using common anti-inflammatory drugs. However, prolonged use of these drugs increases the risk of adverse side effects. Accordingly, there is an increasing need for alternative treatments for inflammation with fewer side effects. Exosomes are extracellular vesicles secreted by most eukaryotic cells and have been studied as a candidate for cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. In recent years, the focus of exosome research has shifted from animal cell-derived exosomes to plant-derived exosome-like nanoparticles (PDENs). Plant-derived exosome-like nanoparticles (PDENs) are easier to obtain, have minimal safety concerns, and can be produced in higher quantities and lower cost than exosomes derived from animal cells. In this study, the isolation and analysis of the anti-inflammatory potential of PDENs from black nightshade berries (Solanum nigrum L.) were carried out. The results of isolation and characterization showed that PDENs had a spherical morphology, measuring around 107 nm with zeta potential of -0.6 mV, and had a protein concentration of 275.38 μg/mL. PDENs were also shown to be internalized by RAW264.7 macrophage cell line after 2 hours of incubation and had no cytotoxicity effect up to the concentration of 2.5 μg/mL. Furthermore, exposure to several doses of PDENs to the LPS-stimulated RAW264.7 cell significantly decreased the expression of pro-inflammatory cytokine gene IL-6, as well as the expression of IL-6 protein up to 97,28%. GC-MS analysis showed the presence of neral, a monoterpene compound with known anti-inflammatory properties, which may contribute to the anti-inflammatory activity of PDENs isolated from Solanum nigrum L. berries. Taken together, the present study was the first to isolate and characterize PDENs from Solanum nigrum L. berries. The results of this study also demonstrated the anti-inflammatory activity of PDEN by suppressing the production of IL-6 in LPS-stimulated RAW264.7 cells.
AB - Inflammation is a temporary response of the immune system that can be treated using common anti-inflammatory drugs. However, prolonged use of these drugs increases the risk of adverse side effects. Accordingly, there is an increasing need for alternative treatments for inflammation with fewer side effects. Exosomes are extracellular vesicles secreted by most eukaryotic cells and have been studied as a candidate for cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. In recent years, the focus of exosome research has shifted from animal cell-derived exosomes to plant-derived exosome-like nanoparticles (PDENs). Plant-derived exosome-like nanoparticles (PDENs) are easier to obtain, have minimal safety concerns, and can be produced in higher quantities and lower cost than exosomes derived from animal cells. In this study, the isolation and analysis of the anti-inflammatory potential of PDENs from black nightshade berries (Solanum nigrum L.) were carried out. The results of isolation and characterization showed that PDENs had a spherical morphology, measuring around 107 nm with zeta potential of -0.6 mV, and had a protein concentration of 275.38 μg/mL. PDENs were also shown to be internalized by RAW264.7 macrophage cell line after 2 hours of incubation and had no cytotoxicity effect up to the concentration of 2.5 μg/mL. Furthermore, exposure to several doses of PDENs to the LPS-stimulated RAW264.7 cell significantly decreased the expression of pro-inflammatory cytokine gene IL-6, as well as the expression of IL-6 protein up to 97,28%. GC-MS analysis showed the presence of neral, a monoterpene compound with known anti-inflammatory properties, which may contribute to the anti-inflammatory activity of PDENs isolated from Solanum nigrum L. berries. Taken together, the present study was the first to isolate and characterize PDENs from Solanum nigrum L. berries. The results of this study also demonstrated the anti-inflammatory activity of PDEN by suppressing the production of IL-6 in LPS-stimulated RAW264.7 cells.
UR - http://www.scopus.com/inward/record.url?scp=85181561928&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0296259
DO - 10.1371/journal.pone.0296259
M3 - Article
C2 - 38175845
AN - SCOPUS:85181561928
SN - 1932-6203
VL - 19
JO - PloS one
JF - PloS one
IS - 1 January
M1 - e0296259
ER -