Investigation on Weld Characteristic, Welding Position, Microstructure, and Mechanical Properties in Orbital Pulse Current Gas Tungsten Arc Welding of AISI 304L Stainless Steel Pipe

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Orbital pipe welding is carried out in this study by Pulse Current Gas Tungsten Arc Welding (PC-GTAW) without metal filler (autogenous) of AISI 304L stainless steel pipe. The dimensions of the specimen are 114 mm outside diameter and the thickness of 3 mm. This study investigates the effect of pulse current parameters, weld position, and pulse width on the characteristics of weld geometry, mechanical properties, and microstructure. The welding method used in this study is the continuous current and pulse current. The mean current of each parameter is the same at 100 ± 0.5 Amperes, but in the pulse current, there are variations in peak current, base current, peak current time, and the base current time. The welding speed used is constant at 1.4 mm/s. The result of weld geometry on the outside of pipe has shown that the flat (0°) position is concave and the overhead (180°) position is convex due to the influence of gravity. The microstructure indicates that the fine cellular dendritic structures appear at PC-GTAW. The PC-GTAW can produce good mechanical properties such as the tensile strength and the micro-hardness. The tensile strength of the specimen is reduced 14.23

Original languageEnglish
Pages (from-to)473-483
Number of pages11
JournalInternational Journal of Technology
Volume13
Issue number3
DOIs
Publication statusPublished - 2022

Keywords

  • Aisi 304l
  • Orbital pipe welding
  • Pc-gtaw
  • Weld characteristic

Fingerprint

Dive into the research topics of 'Investigation on Weld Characteristic, Welding Position, Microstructure, and Mechanical Properties in Orbital Pulse Current Gas Tungsten Arc Welding of AISI 304L Stainless Steel Pipe'. Together they form a unique fingerprint.

Cite this