TY - JOUR
T1 - Investigation on Weld Characteristic, Welding Position, Microstructure, and Mechanical Properties in Orbital Pulse Current Gas Tungsten Arc Welding of AISI 304L Stainless Steel Pipe
AU - Widyianto, Agus
AU - Baskoro, Ario Sunar
AU - Kiswanto, Gandjar
N1 - Funding Information:
This research is supported by the Master Program to Doctorate for Scholar Excellent (PMDSU) program of the Ministry of Research & Technology and High Education (RISTEK DIKTI) 2018 with contract number 6265/UN2.R3.1/HKP05.00/2018.
Publisher Copyright:
© 2022. International Journal of Technology.All Rights Reserved.
PY - 2022
Y1 - 2022
N2 - Orbital pipe welding is carried out in this study by Pulse Current Gas Tungsten Arc Welding (PC-GTAW) without metal filler (autogenous) of AISI 304L stainless steel pipe. The dimensions of the specimen are 114 mm outside diameter and the thickness of 3 mm. This study investigates the effect of pulse current parameters, weld position, and pulse width on the characteristics of weld geometry, mechanical properties, and microstructure. The welding method used in this study is the continuous current and pulse current. The mean current of each parameter is the same at 100 ± 0.5 Amperes, but in the pulse current, there are variations in peak current, base current, peak current time, and the base current time. The welding speed used is constant at 1.4 mm/s. The result of weld geometry on the outside of pipe has shown that the flat (0°) position is concave and the overhead (180°) position is convex due to the influence of gravity. The microstructure indicates that the fine cellular dendritic structures appear at PC-GTAW. The PC-GTAW can produce good mechanical properties such as the tensile strength and the micro-hardness. The tensile strength of the specimen is reduced 14.23
AB - Orbital pipe welding is carried out in this study by Pulse Current Gas Tungsten Arc Welding (PC-GTAW) without metal filler (autogenous) of AISI 304L stainless steel pipe. The dimensions of the specimen are 114 mm outside diameter and the thickness of 3 mm. This study investigates the effect of pulse current parameters, weld position, and pulse width on the characteristics of weld geometry, mechanical properties, and microstructure. The welding method used in this study is the continuous current and pulse current. The mean current of each parameter is the same at 100 ± 0.5 Amperes, but in the pulse current, there are variations in peak current, base current, peak current time, and the base current time. The welding speed used is constant at 1.4 mm/s. The result of weld geometry on the outside of pipe has shown that the flat (0°) position is concave and the overhead (180°) position is convex due to the influence of gravity. The microstructure indicates that the fine cellular dendritic structures appear at PC-GTAW. The PC-GTAW can produce good mechanical properties such as the tensile strength and the micro-hardness. The tensile strength of the specimen is reduced 14.23
KW - Aisi 304l
KW - Orbital pipe welding
KW - Pc-gtaw
KW - Weld characteristic
UR - http://www.scopus.com/inward/record.url?scp=85133311040&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v13i3.3134
DO - 10.14716/ijtech.v13i3.3134
M3 - Article
AN - SCOPUS:85133311040
SN - 2086-9614
VL - 13
SP - 473
EP - 483
JO - International Journal of Technology
JF - International Journal of Technology
IS - 3
ER -