TY - JOUR
T1 - Investigation of the charge-orbital ordering mechanism in single-layered Pr0.5Ca1.5MnO4
AU - Rangkuti, C. N.
AU - Majidi, M. A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/5/9
Y1 - 2018/5/9
N2 - Motivated by the experimental study of half-doped single-layered Pr0.5Ca1.5MnO4 showing charge, orbital, and spin orderings [1], we propose a model to theoretically study the system to explain such ordering phenomena. The ground state electron configuration reveals that the charges form a checkerboard pattern with alternating Mn3+/Mn4+ sites, while the orbitals are aligned in zigzag chains [1, 2]. We calculate the ground state energy of this system to find the most preferable configuration by comparing three types of configurations (charge-unordered, charge-ordered, and charge-orbital-ordered states). The calculations are based on a tight-binding model representing effective electron hoppings among Mn ions in MnO2-plane. We take into account the horizontally- and vertically-oriented orbital and spin degrees of freedom at Mn sites. We assume that the hopping integral values depend on the relative orientation between the corresponding orbitals of adjacent Mn ions. The interaction terms we incorporate into our effective Hamiltonian include inter-orbital, intra-orbital Hubbard repulsions, and Jahn-Teller distortion [2]. We absorb the exchange interaction between spins into local self-energy that we calculate within dynamical mean field algorithm [2]. Within our model we show a circumstance in which the charge-orbital ordered configuration has the lowest energy, consistent with the ground state ordering revealed by the experimental data.
AB - Motivated by the experimental study of half-doped single-layered Pr0.5Ca1.5MnO4 showing charge, orbital, and spin orderings [1], we propose a model to theoretically study the system to explain such ordering phenomena. The ground state electron configuration reveals that the charges form a checkerboard pattern with alternating Mn3+/Mn4+ sites, while the orbitals are aligned in zigzag chains [1, 2]. We calculate the ground state energy of this system to find the most preferable configuration by comparing three types of configurations (charge-unordered, charge-ordered, and charge-orbital-ordered states). The calculations are based on a tight-binding model representing effective electron hoppings among Mn ions in MnO2-plane. We take into account the horizontally- and vertically-oriented orbital and spin degrees of freedom at Mn sites. We assume that the hopping integral values depend on the relative orientation between the corresponding orbitals of adjacent Mn ions. The interaction terms we incorporate into our effective Hamiltonian include inter-orbital, intra-orbital Hubbard repulsions, and Jahn-Teller distortion [2]. We absorb the exchange interaction between spins into local self-energy that we calculate within dynamical mean field algorithm [2]. Within our model we show a circumstance in which the charge-orbital ordered configuration has the lowest energy, consistent with the ground state ordering revealed by the experimental data.
UR - http://www.scopus.com/inward/record.url?scp=85047730694&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1011/1/012077
DO - 10.1088/1742-6596/1011/1/012077
M3 - Conference article
AN - SCOPUS:85047730694
SN - 1742-6588
VL - 1011
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012077
T2 - 2017 International Conference on Theoretical and Applied Physics, ICTAP 2017
Y2 - 6 September 2017 through 8 September 2017
ER -