Investigating Surface Fractures and Materials Behavior of Cultural Heritage Buildings Based on the Attribute Information of Point Clouds Stored in the TLS Dataset

Miktha Farid Alkadri, Syaiful Alam, Herry Santosa, Adipandang Yudono, Sebrian Mirdeklis Beselly

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

To date, the potential development of 3D laser scanning has enabled the capture of high-quality and high-precision reality-based datasets for both research and industry. In particular, Terrestrial Laser Scanning (TLS) technology has played a key role in the documentation of cultural heritage. In the existing literature, the geometric properties of point clouds are still the main focus for 3D reconstruction, while the surface performance of the dataset is of less interest due to the partial and limited analysis performed by certain disciplines. As a consequence, geometric defects on surface datasets are often identified when visible through physical inspection. In response to that, this study presents an integrated approach for investigating the materials behavior of heritage building surfaces by making use of attribute point cloud information (i.e., XYZ, RGB, reflection intensity). To do so, fracture surface analysis and material properties are computed to identify vulnerable structures on the existing dataset. This is essential for architects or conservators so that they can assess and prepare preventive measures to minimize microclimatic impacts on the buildings.

Original languageEnglish
Article number410
JournalRemote Sensing
Volume14
Issue number2
DOIs
Publication statusPublished - 1 Jan 2022

Keywords

  • Building performance assessment
  • Fracture surfaces
  • Heritage buildings
  • Material properties
  • Point cloud data

Fingerprint

Dive into the research topics of 'Investigating Surface Fractures and Materials Behavior of Cultural Heritage Buildings Based on the Attribute Information of Point Clouds Stored in the TLS Dataset'. Together they form a unique fingerprint.

Cite this