TY - JOUR
T1 - Influence of organic fraction of municipal solid waste particle size on biogas production
AU - Basaria, Paraginta
AU - Priadi, Cindy Rianti
N1 - Publisher Copyright:
© IJTech 2016.
PY - 2016
Y1 - 2016
N2 - The performance of anaerobic digestion (AD) to process organic fraction of municipal solid waste (OFMSW) can be improved with various pre-treatments. Mechanical pre-treatments, mainly chopping, have shown to be the most economical and relatively effective method to increase contact between the substrate and microorganisms. The purpose of this research was to analyze the effect of OFMSW particle size on CH4 gas formation in a laboratory-scale Biochemical Methane Potential (BMP) assay. The research was conducted for 35 days at a temperature of 35°C with three sizes of OFMSW co-digested with cow manure. OFMSW with particle sizes of 10-13 mm, 4.76-10 mm, and 2-4.76 mm produce CH4 gas with an average of 114.7+14.7 ml, 101.7+0.5 ml, and 110.9+10.8 ml, respectively, while methane yield was 0.277 L CH4/g VS, 0.208 L CH4/g VS, and 0.229 L CH4/g VS, respectively. Particle size is more likely to have an influence on the hydrolysis and acidogenesis processes, as demonstrated by the significant difference of VFA value, but not on the biogas potential. Particle sizes of 13-15 mm produce 19.25 mg VFA/L, while the size range of 2-4.76 mm produces 118.1 mg VFA/L.
AB - The performance of anaerobic digestion (AD) to process organic fraction of municipal solid waste (OFMSW) can be improved with various pre-treatments. Mechanical pre-treatments, mainly chopping, have shown to be the most economical and relatively effective method to increase contact between the substrate and microorganisms. The purpose of this research was to analyze the effect of OFMSW particle size on CH4 gas formation in a laboratory-scale Biochemical Methane Potential (BMP) assay. The research was conducted for 35 days at a temperature of 35°C with three sizes of OFMSW co-digested with cow manure. OFMSW with particle sizes of 10-13 mm, 4.76-10 mm, and 2-4.76 mm produce CH4 gas with an average of 114.7+14.7 ml, 101.7+0.5 ml, and 110.9+10.8 ml, respectively, while methane yield was 0.277 L CH4/g VS, 0.208 L CH4/g VS, and 0.229 L CH4/g VS, respectively. Particle size is more likely to have an influence on the hydrolysis and acidogenesis processes, as demonstrated by the significant difference of VFA value, but not on the biogas potential. Particle sizes of 13-15 mm produce 19.25 mg VFA/L, while the size range of 2-4.76 mm produces 118.1 mg VFA/L.
KW - BMP
KW - CH gas
KW - Organic waste
KW - Particle size
KW - VFA
UR - http://www.scopus.com/inward/record.url?scp=85010366730&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v7i8.6895
DO - 10.14716/ijtech.v7i8.6895
M3 - Article
AN - SCOPUS:85010366730
SN - 2086-9614
VL - 7
SP - 1430
EP - 1436
JO - International Journal of Technology
JF - International Journal of Technology
IS - 8
ER -