Identification of malignant skin cancer using back-propagation learning with Karhunen-Loeve transformation

Research output: Contribution to journalConference articlepeer-review


Malignant melanoma is the deadliest form of cancer, fortunately, if it is detected early, even this type of cancer may be treated successfully. In this paper, we present a neural network approach for the automated separation of melanoma from benign categories of cancer, which exhibit melanoma-like characteristics. To reduce the computational complexities, while increasing the possibility of not being trapped in local minima of the back-propagation neural network, we applied Karhunen-Loeve transformation technique to the originally training patterns. We also utilized a cross entropy error function between the output and the target patterns. Using this approach, for reasonably balance of training/testing set, about 94% of correct classification of malignant and benign cancers could be obtained.

Original languageEnglish
Pages (from-to)381-386
Number of pages6
JournalProceedings of SPIE - The International Society for Optical Engineering
Publication statusPublished - 2000
EventOptical Pattern Recognition XI - Orlando, FL, USA
Duration: 26 Apr 200027 Apr 2000


Dive into the research topics of 'Identification of malignant skin cancer using back-propagation learning with Karhunen-Loeve transformation'. Together they form a unique fingerprint.

Cite this