TY - GEN
T1 - Identification and screening of rare actinomycetes isolated from Neesia altissima Bl.
AU - Pratiwi, R. H.
AU - Hidayat, I.
AU - Hanafi, M.
AU - Mangunwardoyo, Wibowo
PY - 2017/7/10
Y1 - 2017/7/10
N2 - Actinomycetes is the main source of antibiotics and endophytic actinomycetes from medicinal plants has considerable potential as like the host. The aim of this research is to identify rare actinomycetes isolated from Neesia altissima and to screen their antagonistic activity against diarrhea-causing bacteria in order to find new potential secondary metabolites. Samples of N. altissima were collected from mount Halimun-Salak National Park. Endophytic actinomycetes were isolated from roots of N. altissima by surface sterilization method. Screening of antagonistic activity was conducted against five diarrhea-causing bacteria such as Bacillus cereus ATCC 10876, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 25241, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 by using diffusion disc methods. The endophytic actinomycete showed in vitro antibacterial activity against four diarrhea-causing bacteria, except the B. cereus ATCC 10876. The phylogenetic tree generated from 16S rRNA sequence showed that sequence of endophytic actinomycetes isolates nested in the clade belonging to the genus Nonomuraea. Sequence of UICC B-94 formed a monophyletic clade with N. jabiensis strain A4036 and N. rubra strain AC 615. Therefore, it is named as Nonomuraea sp. strain UICC B-94.
AB - Actinomycetes is the main source of antibiotics and endophytic actinomycetes from medicinal plants has considerable potential as like the host. The aim of this research is to identify rare actinomycetes isolated from Neesia altissima and to screen their antagonistic activity against diarrhea-causing bacteria in order to find new potential secondary metabolites. Samples of N. altissima were collected from mount Halimun-Salak National Park. Endophytic actinomycetes were isolated from roots of N. altissima by surface sterilization method. Screening of antagonistic activity was conducted against five diarrhea-causing bacteria such as Bacillus cereus ATCC 10876, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 25241, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 by using diffusion disc methods. The endophytic actinomycete showed in vitro antibacterial activity against four diarrhea-causing bacteria, except the B. cereus ATCC 10876. The phylogenetic tree generated from 16S rRNA sequence showed that sequence of endophytic actinomycetes isolates nested in the clade belonging to the genus Nonomuraea. Sequence of UICC B-94 formed a monophyletic clade with N. jabiensis strain A4036 and N. rubra strain AC 615. Therefore, it is named as Nonomuraea sp. strain UICC B-94.
UR - http://www.scopus.com/inward/record.url?scp=85026199380&partnerID=8YFLogxK
U2 - 10.1063/1.4991203
DO - 10.1063/1.4991203
M3 - Conference contribution
AN - SCOPUS:85026199380
T3 - AIP Conference Proceedings
BT - International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
A2 - Sugeng, Kiki Ariyanti
A2 - Triyono, Djoko
A2 - Mart, Terry
PB - American Institute of Physics Inc.
T2 - 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Y2 - 1 November 2016 through 2 November 2016
ER -