Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

Murni, Alhadi B., Ernastuti, T. Handhika, Djati Kirani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Subtitle of host publicationProceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016
EditorsKiki Ariyanti Sugeng, Djoko Triyono, Terry Mart
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415362
DOIs
Publication statusPublished - 10 Jul 2017
Event2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1862
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Country/TerritoryIndonesia
CityDepok, Jawa Barat
Period1/11/162/11/16

Keywords

  • CUDA
  • graph partitioning
  • hypergraph partitioning
  • matrix-vector
  • parallelization

Fingerprint

Dive into the research topics of 'Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing'. Together they form a unique fingerprint.

Cite this