Hydrogen recovery from hydrogen-methane gas mixture utilized by palm shell based bioadsorbent activated carbon

Sheila Nabila Putri, Mahmud Sudibandriyo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The objective of the study is to obtain suitable adsorbent to be applied for the purification of hydrogen from hydrogen-methane gas mixture. The application will be used to increase the efficiency of process in refinery unit focusing on hydrogen supply as the feed of hydrocracking unit. One of the promising technology is adsorption. In this study, adsorbent used is utilized by palm shell based bioadsorbent activated carbon which is a potential raw material among others due to its carbon and lignin content also its abundant supply. The activated carbon is going through chemical activation using H3PO4 to increase its surface area. Characteristic test of produced activated carbon is measured to obtain surface area which resulted in BET surface area of 414.91 m2 /g and iodine number of 716 mg/g. In this case, a detailed experimental study has been made for the adsorption of pure methane, and pure hydrogen at 20o C and CH4/H2 gas mixture at 10, 20, and 30o C isothermal condition with pressure variation for each isothermal condition 1 – 6 bar. Measurement were made using volumetric technique coupled with gas chromatographic analysis. The result of adsorption test shows at 20o C adsorption of pure CH4 was highest followed by mixture gas of CH4/H2 with 1.5% methane then pure H2. The adsorption of gas mixture for any composition of gas were increased with increasing pressure at all temperatures. At the same pressure, adsorption of gas mixture that composed of 8.5% methane at 10 and 30o C increased in lower isothermal condition. Based on gas chromatograph analysis, in all conditions methane in gas mixture is all adsorbed to activated carbon. The trend of isothermal adsorption also fits the Langmuir model of isothermal adsorption.

Original languageEnglish
Title of host publicationAdvanced Materials Research - QiR 15
EditorsArdiyansyah Yatim
PublisherTrans Tech Publications Ltd
Pages128-135
Number of pages8
ISBN (Print)9783035712667
DOIs
Publication statusPublished - 2018
Event15th International Conference on Quality in Research, QiR 2017 - Nusa Dua, Bali, Indonesia
Duration: 24 Jul 201727 Jul 2017

Publication series

NameMaterials Science Forum
Volume929 MSF
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Conference

Conference15th International Conference on Quality in Research, QiR 2017
Country/TerritoryIndonesia
CityNusa Dua, Bali
Period24/07/1727/07/17

Keywords

  • Activated Carbon
  • Adsorption
  • Hydrogen Recovery
  • Methane
  • Palm Shell

Fingerprint

Dive into the research topics of 'Hydrogen recovery from hydrogen-methane gas mixture utilized by palm shell based bioadsorbent activated carbon'. Together they form a unique fingerprint.

Cite this