TY - JOUR
T1 - High-Resolution Rainfall Estimation Using Ensemble Learning Techniques and Multisensor Data Integration
AU - Putra, Maulana
AU - Rosid, Mohammad Syamsu
AU - Handoko, Djati
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/8
Y1 - 2024/8
N2 - In Indonesia, the monitoring of rainfall requires an estimation system with a high resolution and wide spatial coverage because of the complexities of the rainfall patterns. This study built a rainfall estimation model for Indonesia through the integration of data from various instruments, namely, rain gauges, weather radars, and weather satellites. An ensemble learning technique, specifically, extreme gradient boosting (XGBoost), was applied to overcome the sparse data due to the limited number of rain gauge points, limited weather radar coverage, and imbalanced rain data. The model includes bias correction of the satellite data to increase the estimation accuracy. In addition, the data from several weather radars installed in Indonesia were also combined. This research handled rainfall estimates in various rain patterns in Indonesia, such as seasonal, equatorial, and local patterns, with a high temporal resolution, close to real time. The validation was carried out at six points, namely, Bandar Lampung, Banjarmasin, Pontianak, Deli Serdang, Gorontalo, and Biak. The research results show good estimation accuracy, with respective values of 0.89, 0.91, 0.89, 0.9, 0.92, and 0.9, and root mean square error (RMSE) values of 2.75 mm/h, 2.57 mm/h, 3.08 mm/h, 2.64 mm/h, 1.85 mm/h, and 2.48 mm/h. Our research highlights the potential of this model to accurately capture diverse rainfall patterns in Indonesia at high spatial and temporal scales.
AB - In Indonesia, the monitoring of rainfall requires an estimation system with a high resolution and wide spatial coverage because of the complexities of the rainfall patterns. This study built a rainfall estimation model for Indonesia through the integration of data from various instruments, namely, rain gauges, weather radars, and weather satellites. An ensemble learning technique, specifically, extreme gradient boosting (XGBoost), was applied to overcome the sparse data due to the limited number of rain gauge points, limited weather radar coverage, and imbalanced rain data. The model includes bias correction of the satellite data to increase the estimation accuracy. In addition, the data from several weather radars installed in Indonesia were also combined. This research handled rainfall estimates in various rain patterns in Indonesia, such as seasonal, equatorial, and local patterns, with a high temporal resolution, close to real time. The validation was carried out at six points, namely, Bandar Lampung, Banjarmasin, Pontianak, Deli Serdang, Gorontalo, and Biak. The research results show good estimation accuracy, with respective values of 0.89, 0.91, 0.89, 0.9, 0.92, and 0.9, and root mean square error (RMSE) values of 2.75 mm/h, 2.57 mm/h, 3.08 mm/h, 2.64 mm/h, 1.85 mm/h, and 2.48 mm/h. Our research highlights the potential of this model to accurately capture diverse rainfall patterns in Indonesia at high spatial and temporal scales.
KW - ensemble learning
KW - multisensor
KW - rainfall
UR - http://www.scopus.com/inward/record.url?scp=85200856349&partnerID=8YFLogxK
U2 - 10.3390/s24155030
DO - 10.3390/s24155030
M3 - Article
C2 - 39124079
AN - SCOPUS:85200856349
SN - 1424-3210
VL - 24
JO - Sensors
JF - Sensors
IS - 15
M1 - 5030
ER -