Hepatitis C virus infection suppresses GLUT2 gene expression via downregulation of hepatocyte nuclear factor 1α

Chieko Matsui, Ikuo Shoji, Shusaku Kaneda, Imelda Rosalyn Sianipar, Lin Deng, Hak Hotta

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


Hepatitis C virus (HCV) infection causes not only intrahepatic diseases but also extrahepatic manifestations, including type 2 diabetes. We previously reported that HCV replication suppresses cellular glucose uptake by downregulation of cell surface expression of glucose transporter 2 (GLUT2) (D. Kasai et al., J. Hepatol. 50:883-894, 2009). GLUT2 mRNA levels were decreased in both HCV RNA replicon cells and HCV J6/JFH1-infected cells. To elucidate molecular mechanisms of HCV-induced suppression of GLUT2 gene expression, we analyzed transcriptional regulation of the GLUT2 promoter using a series of GLUT2 promoterluciferase reporter plasmids. HCV-induced suppression of GLUT2 promoter activity was abrogated when the hepatocyte nuclear factor 1α (HNF-1α)-binding motif was deleted from the GLUT2 promoter. HNF-1α mRNA levels were significantly reduced in HCV J6/JFH1-infected cells. Furthermore, HCV infection remarkably decreased HNF-1α protein levels. We assessed the effects of proteasome inhibitor or lysosomal protease inhibitors on the HCV-induced reduction of HNF-1α protein levels. Treatment of HCV-infected cells with a lysosomal protease inhibitor, but not with a proteasome inhibitor, restored HNF-1α protein levels, suggesting that HCV infection promotes lysosomal degradation of HNF-1α protein. Overexpression of NS5A protein enhanced lysosomal degradation of HNF-1α protein and suppressed GLUT2 promoter activity. Immunoprecipitation analyses revealed that the region from amino acids 1 to 126 of the NS5A domain I physically interacts with HNF-1α protein. Taken together, our results suggest that HCV infection suppresses GLUT2 gene expression via downregulation of HNF-1α expression at transcriptional and posttranslational levels. HCV-induced downregulation of HNF-1α expression may play a crucial role in glucose metabolic disorders caused by HCV.

Original languageEnglish
Pages (from-to)12903-12911
Number of pages9
JournalJournal of Virology
Issue number23
Publication statusPublished - Dec 2012


Dive into the research topics of 'Hepatitis C virus infection suppresses GLUT2 gene expression via downregulation of hepatocyte nuclear factor 1α'. Together they form a unique fingerprint.

Cite this