TY - GEN
T1 - Global SNR maximization for distributed estimation and capacity of data collection in wireless sensor networks using individual power constraint
AU - Arifin, Ajib Setyo
AU - Ohtsuki, Tomoaki
N1 - Publisher Copyright:
© 2014 Asia-Pacific Signal and Information Processing Ass.
PY - 2014/2/12
Y1 - 2014/2/12
N2 - We consider distributed estimation in wireless sensor networks (WSNs). Using linear minimum mean squared error (LMMSE) estimator, we derive mean squared error (MSE) to measure the quality of estimation. We introduce a global signal to noise ratio (SNR), where we can derive capacity of data collection in terms of mutual information as reciprocity of MSE. Based on the global SNR, we derive equal power allocation and optimal power allocation in orthogonal multiple access channel (MAC) models. We also derive asymptotic behavior of the global SNR when the power and the number of sensors become unlimited. We minimize MSE as well as maximize mutual information by considering total and individual power constraints. We show that MSE and mutual information of equal power allocation outperforms optimal power allocation. Moreover, system with individual power constraint is worse than the system without that because the suggested power to be allocated is constrained by maximum transmit power of the sensors.
AB - We consider distributed estimation in wireless sensor networks (WSNs). Using linear minimum mean squared error (LMMSE) estimator, we derive mean squared error (MSE) to measure the quality of estimation. We introduce a global signal to noise ratio (SNR), where we can derive capacity of data collection in terms of mutual information as reciprocity of MSE. Based on the global SNR, we derive equal power allocation and optimal power allocation in orthogonal multiple access channel (MAC) models. We also derive asymptotic behavior of the global SNR when the power and the number of sensors become unlimited. We minimize MSE as well as maximize mutual information by considering total and individual power constraints. We show that MSE and mutual information of equal power allocation outperforms optimal power allocation. Moreover, system with individual power constraint is worse than the system without that because the suggested power to be allocated is constrained by maximum transmit power of the sensors.
KW - distributed estimation
KW - individual power constraint
KW - mean squared error (MSE)
KW - mutual information
KW - orthogonal MAC
UR - http://www.scopus.com/inward/record.url?scp=84949924491&partnerID=8YFLogxK
U2 - 10.1109/APSIPA.2014.7041523
DO - 10.1109/APSIPA.2014.7041523
M3 - Conference contribution
AN - SCOPUS:84949924491
T3 - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
BT - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
Y2 - 9 December 2014 through 12 December 2014
ER -