Fuzzy vector implementation on manifold embedding for head pose estimation with degraded images using fuzzy nearest distance

Muhammad Adi Nugroho, Benyamin Kusumo Putro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Advancement of image acquisition and processing technology have triggered the development of 3D face recognition and, along with it, the head poses estimation. The problem arises when image degradation occurred thus reducing the capability of the system to analyze the image. We seek to minimize the problem by constructing a system that handles imprecision data with no significant problem. This paper introduces an alternative approach on manifold embedding head pose estimation on 3D space with 2D intensity image. We employ fuzzy vector used to make the system works with imprecision data thus minimize the negative effect coming from noise and image degradation. On the training set, crisp vector representation of images on specific pose will be transformed to its fuzzy vector representation using a specific triangle fuzzification method. Then, a linear interpolation will be used to construct a manifold, adding data points to improve the precision of pose estimation. In the testing phase, we transform every unknown data image to its fuzzy-vector representation using the parameter we obtained from training phase. We then project the unknown fuzzy vector to the manifolds using a technique called fuzzy nearest distance. The output will be the fuzzy points that mostly represent the unknown fuzzy vector given. This system is applied to recognize pose on images from our database which some of them are influenced by noises. Experimental poses range widely from -90o to 90o horizontally and 0o to 70o vertically. The experimental result shows that the system can correctly recognize horizontal poses with 44.4% success rate and vertical poses with 49.4% success rate.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Communication and Information Processing, ICCIP 2017
PublisherAssociation for Computing Machinery
Pages454-457
Number of pages4
ISBN (Electronic)9781450353656
DOIs
Publication statusPublished - 24 Nov 2017
Event3rd International Conference on Communication and Information Processing, ICCIP 2017 - Tokyo, Japan
Duration: 24 Nov 201726 Nov 2017

Publication series

NameACM International Conference Proceeding Series

Conference

Conference3rd International Conference on Communication and Information Processing, ICCIP 2017
CountryJapan
CityTokyo
Period24/11/1726/11/17

Keywords

  • Fuzzy line interpolation
  • Fuzzy manifold
  • Fuzzy nearest distance
  • Fuzzy vector
  • Image noises
  • Pose estimation

Fingerprint Dive into the research topics of 'Fuzzy vector implementation on manifold embedding for head pose estimation with degraded images using fuzzy nearest distance'. Together they form a unique fingerprint.

  • Cite this

    Nugroho, M. A., & Putro, B. K. (2017). Fuzzy vector implementation on manifold embedding for head pose estimation with degraded images using fuzzy nearest distance. In Proceedings of the 3rd International Conference on Communication and Information Processing, ICCIP 2017 (pp. 454-457). (ACM International Conference Proceeding Series). Association for Computing Machinery. https://doi.org/10.1145/3162957.3163020