Fractured-basement reservoir modeling using continuous fracture modeling (CFM) method

Nadya Isniarny, Abd. Haris, Safrizal Nurdin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The challenge in oil and gas exploration has now shifted due to increasingly difficult to get back up economic value in a conventional reservoir. Explorationist are developing various drilling technology, optimizing conventional reserves and unconventional reserve in reservoirs. One of the unconventional reservoir that has been developed is the basement reservoir. This rock type has no primary porosity and the permeability of the rocks of this type are generally influenced by the naturally fracture networks. The purpose of this study is to map the fracture intensity distribution in the basement reservoir using Continuous Fracture Modeling (CFM) method. CFM method applies the basic concepts of neural network in finding a relationship between well data with seismic data in order to build a model of fracture intensity. The Formation Micro Imager (FMI) interpretation data is used to identify the presence of fracture along the well as dip angle and dip azimuth. This indicator will be laterally populated in 3D grid model. Several seismic attribute which are generated from seismic data is used as a guidance to populate fracture intensity in the model. The results from the model were validated with Drill Stem Test (DST) data. Zones of high fracture intensity on the model correlates positively with the presence of fluid in accordance with DST data.

Original languageEnglish
Title of host publicationInternational Symposium on Frontier of Applied Physics, ISFAP 2015
Editors Isnaeni, Andrivo Rusydi, Febty Febriani, Muhammad Danang Birowosuto, Yuliati Herbani, Toto Sudiro, Hubby Izzuddin, Dedy H. B. Wicaksono, Ferensa Oemry, Titi Anggono
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413580
DOIs
Publication statusPublished - 12 Feb 2016
EventInternational Symposium on Frontier of Applied Physics, ISFAP 2015 - Bandung, West Java, Indonesia
Duration: 5 Oct 20157 Oct 2015

Publication series

NameAIP Conference Proceedings
Volume1711
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Symposium on Frontier of Applied Physics, ISFAP 2015
CountryIndonesia
CityBandung, West Java
Period5/10/157/10/15

Fingerprint Dive into the research topics of 'Fractured-basement reservoir modeling using continuous fracture modeling (CFM) method'. Together they form a unique fingerprint.

Cite this