TY - GEN
T1 - Formaldehyde production process control performance improvement using model predictive control
AU - Wahid, Abdul
AU - Salman, Sultan Shiddiqi
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/9/23
Y1 - 2021/9/23
N2 - This article demonstrates the improvement of control performance in formaldehyde production process using model predictive control (MPC) in comparison between conventional proportional-integral control. MPC is an advance process control which can improve the performance of a control process in terms of time delay, open loop instability, constraints, and thereof combinations. MPC will reduce the variance in the control variable that affects the process to operate closer to physical constraints. The empirical model of the MPC controller is based on the process reaction curve (PRC) by using the first order plus dead time (FOPDT) approach. Four controllers which were flow control (FIC-102), temperature control (TIC-101), pressurce control (PIC-101), and liquid level control (LIC-101) were tested by changing the set points (SP) and giving disturbances. The performance indicator for the controllers are shown by their value of integral of absolute error (IAE) and integral of square error (ISE). The results show that the MPC improved the controllers' performance either tested by changing SP or giving disturbance and are better in terms of IAE or ISE.
AB - This article demonstrates the improvement of control performance in formaldehyde production process using model predictive control (MPC) in comparison between conventional proportional-integral control. MPC is an advance process control which can improve the performance of a control process in terms of time delay, open loop instability, constraints, and thereof combinations. MPC will reduce the variance in the control variable that affects the process to operate closer to physical constraints. The empirical model of the MPC controller is based on the process reaction curve (PRC) by using the first order plus dead time (FOPDT) approach. Four controllers which were flow control (FIC-102), temperature control (TIC-101), pressurce control (PIC-101), and liquid level control (LIC-101) were tested by changing the set points (SP) and giving disturbances. The performance indicator for the controllers are shown by their value of integral of absolute error (IAE) and integral of square error (ISE). The results show that the MPC improved the controllers' performance either tested by changing SP or giving disturbance and are better in terms of IAE or ISE.
UR - http://www.scopus.com/inward/record.url?scp=85116493641&partnerID=8YFLogxK
U2 - 10.1063/5.0063449
DO - 10.1063/5.0063449
M3 - Conference contribution
AN - SCOPUS:85116493641
T3 - AIP Conference Proceedings
BT - 5th International Tropical Renewable Energy Conference, i-TREC 2020
A2 - Irwansyah, Ridho
A2 - Budiyanto, Muhammad Arif
PB - American Institute of Physics Inc.
T2 - 5th International Tropical Renewable Energy Conference, i-TREC 2020
Y2 - 29 October 2020 through 30 October 2020
ER -