TY - GEN
T1 - Finite Element Analysis of C1 - L5 Spinal Bone Simulators Made of Various High Elastic Modulus Polymer Filaments
AU - Nadhif, Muhammad Hanif
AU - Irsyad, Muhammad
AU - Kurniawati, Tri
AU - Rahyussalim, Ahmad Jabir
N1 - Funding Information:
This research is funded by a PTUPT grant scheme from the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia.
Publisher Copyright:
© 2022 American Institute of Physics Inc.. All rights reserved.
PY - 2022/8/16
Y1 - 2022/8/16
N2 - One of the novel treatments for spinal bone diseases is by delivering the stem cells to the bone using introducers. The stem cell delivery treatment indeed requires training to prevent malpractices. The training usually involves phantoms, which are expected to comply with the mechanical properties of their biological counterparts. Therefore, residents will feel the tactile feedback similar to the bones. Some high elastic modulus polymers, such as polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polycarbonate (PC), have been reported to have similar toughness to spinal bones. This study sought to compare the three polymers: PEEK, PEKK, and PC, as materials for spinal models reconstituting C1 - L5 vertebral bodies using finite element analysis (FEA). The three polymers were in the form of 3D printed products. The spinal models were obtained from an online database. The FEA was performed using a static structural mechanics module. Uniaxial tensile, compressive, and shear stresses were applied to the vertebral body models, resulting in deformation magnitudes and von Mises stresses (vMS). The resulting vMS were subsequently compared with the ultimate strength of each material, resulting in ratios of vMS vs. ultimate strength, hence MTR, MCR, and MSR. Smaller MTR, MCR, and MSR values indicate better performance of materials. MTR, MCR, and MSR results showed that PEEK has the best performance amongst materials.
AB - One of the novel treatments for spinal bone diseases is by delivering the stem cells to the bone using introducers. The stem cell delivery treatment indeed requires training to prevent malpractices. The training usually involves phantoms, which are expected to comply with the mechanical properties of their biological counterparts. Therefore, residents will feel the tactile feedback similar to the bones. Some high elastic modulus polymers, such as polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polycarbonate (PC), have been reported to have similar toughness to spinal bones. This study sought to compare the three polymers: PEEK, PEKK, and PC, as materials for spinal models reconstituting C1 - L5 vertebral bodies using finite element analysis (FEA). The three polymers were in the form of 3D printed products. The spinal models were obtained from an online database. The FEA was performed using a static structural mechanics module. Uniaxial tensile, compressive, and shear stresses were applied to the vertebral body models, resulting in deformation magnitudes and von Mises stresses (vMS). The resulting vMS were subsequently compared with the ultimate strength of each material, resulting in ratios of vMS vs. ultimate strength, hence MTR, MCR, and MSR. Smaller MTR, MCR, and MSR values indicate better performance of materials. MTR, MCR, and MSR results showed that PEEK has the best performance amongst materials.
KW - FEA
KW - PC
KW - PEEK
KW - PEKK
KW - spinal phantoms
UR - http://www.scopus.com/inward/record.url?scp=85138237748&partnerID=8YFLogxK
U2 - 10.1063/5.0098411
DO - 10.1063/5.0098411
M3 - Conference contribution
AN - SCOPUS:85138237748
T3 - AIP Conference Proceedings
BT - 6th Biomedical Engineering''s Recent Progress in Biomaterials, Drugs Development, and Medical Devices
A2 - Rahman, Siti Fauziyah
A2 - Zakiyuddin, Ahmad
A2 - Whulanza, Yudan
A2 - Intan, Nurul
PB - American Institute of Physics Inc.
T2 - 6th International Symposium of Biomedical Engineering''s Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2021
Y2 - 7 July 2021 through 8 July 2021
ER -