Abstract
We present a targeted essentially non-oscillatory (TENO) scheme based on Hermite polynomials for solving hyperbolic conservation laws. Hermite polynomials have already been adopted in weighted essentially non-oscillatory (WENO) schemes (Qiu and Shu in J Comput Phys 193:115–135, 2003). The Hermite TENO reconstruction offers major advantages over the earlier reconstruction; namely, it is a compact Hermite-type reconstruction and has low dissipation by virtue of TENO’s stencil voting strategy. Next, we formulate a new high-order global reference smoothness indicator for the proposed scheme. The flux calculations and time-advancing schemes are carried out by the local Lax–Friedrichs flux and third-order strong-stability-preserving Runge–Kutta methods, respectively. The scalar and system of the hyperbolic conservation laws are demonstrated in numerical tests. In these tests, the proposed scheme improves the shock-capturing performance and inherits the good small-scale resolution of the TENO scheme.
Original language | English |
---|---|
Article number | 69 |
Journal | Journal of Scientific Computing |
Volume | 87 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2021 |
Keywords
- Finite-volume method
- High-order schemes
- Hyperbolic conservation laws
- Shock-capturing
- WENO schemes