TY - JOUR
T1 - Feature selection with Lasso for classification of ischemic strokes based on EEG signals
AU - Angga Yuwono, Hendra
AU - Kusuma Wijaya, Sastra
AU - Prajitno, Prawito
N1 - Funding Information:
This work is supported by research grant of Indexed International Publication of Student Final Project (Hibah Publikasi Internasional Terindeks untuk Tugas Akhir (PITTA) Mahasiswa), Universitas Indonesia, Grant No. NKB-0667/UN2.R3.1/HKP.05.00/2019.
Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6/9
Y1 - 2020/6/9
N2 - Electroencephalography (EEG) is an electrical signal data that can describe brain activity in which the signal contains important information that can be used to detect several diseases. One of the diseases that can be detected by EEG signals is stroke. The most common type of stroke is the acute ischemic stroke (AIS) due to blockage of blood supply to the brain which can generate the tissue damage in the brain EEG signal recording uses several electrodes where the more electrodes used in the recording, the greater the number of EEG features produced (high dimensional data). This can make it difficult for models of machine learning to have optimal performance on high-dimensional data. In this study, for optimizing the performance of the machine learning model by selecting features with the Least Absolute Shrinkage and Selection Operator (Lasso) method, where this method can select the relevant features by shrinking some coefficients to zero. The type of classification used in this study is random forest with features used for classification are Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), Delta-Theta-Alpha-Beta Ratio (DTABR). The results showed that the Lasso method can optimize the performance of learning machines with an accuracy value of 75% with 24 features out of 45 features.
AB - Electroencephalography (EEG) is an electrical signal data that can describe brain activity in which the signal contains important information that can be used to detect several diseases. One of the diseases that can be detected by EEG signals is stroke. The most common type of stroke is the acute ischemic stroke (AIS) due to blockage of blood supply to the brain which can generate the tissue damage in the brain EEG signal recording uses several electrodes where the more electrodes used in the recording, the greater the number of EEG features produced (high dimensional data). This can make it difficult for models of machine learning to have optimal performance on high-dimensional data. In this study, for optimizing the performance of the machine learning model by selecting features with the Least Absolute Shrinkage and Selection Operator (Lasso) method, where this method can select the relevant features by shrinking some coefficients to zero. The type of classification used in this study is random forest with features used for classification are Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), Delta-Theta-Alpha-Beta Ratio (DTABR). The results showed that the Lasso method can optimize the performance of learning machines with an accuracy value of 75% with 24 features out of 45 features.
UR - http://www.scopus.com/inward/record.url?scp=85087066232&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1528/1/012029
DO - 10.1088/1742-6596/1528/1/012029
M3 - Conference article
AN - SCOPUS:85087066232
SN - 1742-6588
VL - 1528
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012029
T2 - 4th International Seminar on Sensors, Instrumentation, Measurement and Metrology, ISSIMM 2019
Y2 - 14 November 2019 through 14 November 2019
ER -