TY - GEN
T1 - Fabrication of TiO2nanotube arrays by anodization method in fluoride-H2O2-containing electrolyte for CO gas
AU - Budiman, Harry
AU - Wibowo, Rahmat
AU - Zuas, Oman
AU - Gunlazuardi, Jarnuzi
N1 - Funding Information:
The authors are utmost grateful for the research funding support from the “Sainstek Grants of the Ministry of Research Technology and Higher Education (RISTEK-DIKTI)” and the “Ph.D dissertation Grant of Universitas Indonesia (TADOK-UI)”. The authors also would like to thank Mr. Andreas and the Research Center for Chemistry-Indonesian Institute of Sciences (RCChem-LIPI) for providing laboratory access to instrument facilities in this research work.
Publisher Copyright:
© 2023 Author(s).
PY - 2023/5/22
Y1 - 2023/5/22
N2 - Highly ordered TiO2 nanotube arrays (HOTNAs) were prepared from Ti foil by anodization using the ethylene glycol electrolyte containing 0.3% of ammonium fluoride with different concentrations of H2O2 at 30 V for 90 minutes. The structure, crystal phase, elements composition, and morphology of HOTNAs characterized by X-ray diffraction (XRD), energy dispersive X-Ray (EDX), ultraviolet-visible diffuse reflectance spectroscopy (UV/Vis-DRS), and field emission scanning electron microscope (FE-SEM) resemble the unique properties of TiO2 nanotube arrays in the anatase form with the individual tube diameter of 38-47 nm. The nanotube arrays have been applied for the CO gas sensor. The results show that both HOTNAs sensors synthesized using electrolyte with 0.3% H2O2/0.7% H2O and 1.8% H2O2/4.2% H2O were able to detect CO gas at the concentration range of 3000-20000 ppm. However, it is observed that the sensor prepared by 0.3% H2O2/0.7% H2O-HOTNAs was more sensitive than 1.8% H2O2/4.2% H2O-HOTNAs. The different sensing behavior between 0.3% H2O2/0.7% H2O-HOTNAs and 1.8% H2O2/4.2% H2O-HOTNAs might be attributed to the difference in the morphologies of those HOTNAs nanotubes such as diameter, thickness, and length of the tube.
AB - Highly ordered TiO2 nanotube arrays (HOTNAs) were prepared from Ti foil by anodization using the ethylene glycol electrolyte containing 0.3% of ammonium fluoride with different concentrations of H2O2 at 30 V for 90 minutes. The structure, crystal phase, elements composition, and morphology of HOTNAs characterized by X-ray diffraction (XRD), energy dispersive X-Ray (EDX), ultraviolet-visible diffuse reflectance spectroscopy (UV/Vis-DRS), and field emission scanning electron microscope (FE-SEM) resemble the unique properties of TiO2 nanotube arrays in the anatase form with the individual tube diameter of 38-47 nm. The nanotube arrays have been applied for the CO gas sensor. The results show that both HOTNAs sensors synthesized using electrolyte with 0.3% H2O2/0.7% H2O and 1.8% H2O2/4.2% H2O were able to detect CO gas at the concentration range of 3000-20000 ppm. However, it is observed that the sensor prepared by 0.3% H2O2/0.7% H2O-HOTNAs was more sensitive than 1.8% H2O2/4.2% H2O-HOTNAs. The different sensing behavior between 0.3% H2O2/0.7% H2O-HOTNAs and 1.8% H2O2/4.2% H2O-HOTNAs might be attributed to the difference in the morphologies of those HOTNAs nanotubes such as diameter, thickness, and length of the tube.
UR - http://www.scopus.com/inward/record.url?scp=85161492934&partnerID=8YFLogxK
U2 - 10.1063/5.0141294
DO - 10.1063/5.0141294
M3 - Conference contribution
AN - SCOPUS:85161492934
T3 - AIP Conference Proceedings
BT - Engineering Physics International Conference 2021, EPIC 2021
A2 - Tenggara, Ayodya Pradhipta
A2 - Siddiq, Nur Abdillah
A2 - Pinasti, Sita Gandes
A2 - Insyani, Rizki
A2 - Kurnia, Jundika Candra
A2 - Saha, Geetali
A2 - Moradi-Dastjerdi, Rasool
PB - American Institute of Physics Inc.
T2 - 3rd Engineering Physics International Conference, EPIC 2021
Y2 - 24 August 2021 through 25 August 2021
ER -