Fabrication of compact magnesium disk by spark plasma sintering

Destri Wirani, Anawati Anawati, Toto Sudiro

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Fabrication of pure magnesium (Mg) disk was performed by powder metallurgy with the compaction method of spark plasma sintering (SPS). The effect of mechanical milling time on the microstructure, density, and porosity of the disk specimen was investigated. At an identical temperature, the 4 and 5 h milled specimens exhibited a nearly overlapped displacement curves during SPS, and a higher value indicating a higher densification degree than that of the 3 h milling powder. In agreement, the specimen density increased consecutively from 1.76 to 1.77 and 1.80 g/cm3 for the milling time of 3, 4, and 5 h. However, the porosity increased from 1.21% to 1.49% when the milling time increased from 3 to 4 h and further to 3.44% for 5 h milled specimens. The microstructure observation revealed that the average grain size decreased, and the pores became smaller and elongated with increasing milling time. The number of pores was higher with the gain fraction of grain boundaries. The 3 h milled specimen contained the highest atomic fraction of oxygen (21.9 at%) than that of the 4 and 5 h milled specimens (5.6 at% and 7.9 at%). The optimum milling time for obtaining high density and low porosity of pure Mg disk was 4 h.

Original languageEnglish
Title of host publicationPhysics Symposium
Subtitle of host publicationKey Research in Materials Science
EditorsAyi Bahtiar, Togar Saragi, Sahrul Hidayat, Lusi Safriani
PublisherTrans Tech Publications Ltd
Number of pages5
ISBN (Print)9783035716979
Publication statusPublished - 2020
Event4th Padjadjaran International Physics Symposium, PIPS 2019 - Bandung, Indonesia
Duration: 13 Nov 201914 Nov 2019

Publication series

NameKey Engineering Materials
Volume860 KEM
ISSN (Print)1013-9826
ISSN (Electronic)1662-9795


Conference4th Padjadjaran International Physics Symposium, PIPS 2019


  • Density
  • Magnesium
  • Porosity
  • Spark plasma sintering

Fingerprint Dive into the research topics of 'Fabrication of compact magnesium disk by spark plasma sintering'. Together they form a unique fingerprint.

Cite this