Exploring excitonic signal in optical conductivity of ZnO through first-order electron-hole vertex correction

Humaira Khoirunnisa, Muhammad Aziz Majidi

Research output: Contribution to journalConference articlepeer-review

Abstract

The emergence of exitonic signal in the optical response of a wide band-gap semiconductor has been a common knowledge in physics. There have been numerous experimental studies exploring the important role of excitons on influencing both the transport and optical properties of the materials. Despite the existence of much information on excitonic effects, there has not been much literature that explores detailed theoretical explanation on how the exitonic signal appears and how it evolves with temperature. Here, we propose a theoretical study on the optical conductivity of ZnO, a well-known wide band-gap semiconductor that we choose as a case study. ZnO has been known to exhibit excitonic states in its optical spectra in the energy range of ∼3.13-3.41 eV, with a high exciton binding energy of ∼60 meV. An experimental study on ZnO in 2014 revealed such a signal in its optical conductivity spectrum. We present a theoretical investigation on the appearance of excitonic signal in optical conductivity of ZnO. We model the wurtzite ZnO within an 8-band k.p approximation. We calculate the optical conductivity by incorporating the first-order vertex correction derived from the Feynman diagrams. Our calculation up to the first-order correction spectrum qualitatively confirms the existence of excitons in wurtzite ZnO.

Original languageEnglish
Article number012073
JournalJournal of Physics: Conference Series
Volume1011
Issue number1
DOIs
Publication statusPublished - 9 May 2018
Event2017 International Conference on Theoretical and Applied Physics, ICTAP 2017 - Yogyakarta, Indonesia
Duration: 6 Sep 20178 Sep 2017

Fingerprint

Dive into the research topics of 'Exploring excitonic signal in optical conductivity of ZnO through first-order electron-hole vertex correction'. Together they form a unique fingerprint.

Cite this