TY - JOUR
T1 - Evaluation of the Malalignment Varus-Valgus in Total Knee Arthroplasty Designed for Deep Knee Flexion Used Knee Kinematic Motion Simulator
AU - Triwardono, Joko
AU - Rokhmanto, Fendy
AU - Roberto, Rahadian
AU - Kartika, Ika
AU - Saragih, Agung Shamsuddin
AU - Whulanza, Yudan
AU - Shuib, Solehuddin
AU - Supriadi, Sugeng
N1 - Funding Information:
The author would like to thank the Research Center for Metallurgy – National Research and Innovation Agency and TI-Bio Laboratory of the University of Indonesia, Depok, Indonesia, for providing all the facilities for this research.
Publisher Copyright:
© 2023 Trans Tech Publications Ltd, Switzerland.
PY - 2023
Y1 - 2023
N2 - Revision total knee arthroplasties cause performed aseptic loosening, instability, and polyethylene wear. Separation or removal of the femoral component has been observed and this has the potential to severely damage the polyethylene component. In most cases 90% of the patients examined experienced significant medial or lateral condylar lift at some stage during the gait cycle. Using the MRI, a normal knee has maximum lateral lift is approx. 6.7 mm and maximum medial lift is approx. 2.1 mm, when a varus strees applied at a 90° knee flexion. Elevation of the lateral condyle due to valgus malalignment will distribute more contact force on the medial condyle. In this study, a polyethylene component of a posterior-stabilized right knee joint implant was developed to facilitate a high range of motion (ROM). Malalignment valgus was observed with the axes of knee motion joint implants were varied from 0°, 2°, 3° to 5 and knee bend measurements at 30°, 60°, 90°, 120°, and 150° of knee flexion. Using the knee kinematic motion simulator, the modified polyethylene component resulted in 0° malalignment there is no gap of the femoral component with the polyethylene component, from 30° to 150° of knee flexion. At 2° malalignment, the femoral component was raised by 0.5 mm at a 90° to 150° knee flexion and increased with increasing knee flexion. Maximum gap occurs at 5° malalignment in the amount of 5 mm at 150° of knee flexion. The aim of this study was therefore to evaluation malalignment valgus of the flexed knee using knee kinematic motion simulator, with reference to the tibiofemoral flexion gap. The result that the modified design is expected in an narrow down gap between femoral and polyethylene component used knee kinematic motion simulator, this accommodate deep knee flexion movement in daily activities and reduce the possibility of subluxation and dislocation at the polyethylene component during deep knee flexion. A wide gap between the femoral component and the polyethylene component and a significant amount of contact force in the medial condyle region might be the explanation for polyethylene component damage. It is expected that potential medial or lateral condylar lift at some stage during the gait cycle can be reduced.
AB - Revision total knee arthroplasties cause performed aseptic loosening, instability, and polyethylene wear. Separation or removal of the femoral component has been observed and this has the potential to severely damage the polyethylene component. In most cases 90% of the patients examined experienced significant medial or lateral condylar lift at some stage during the gait cycle. Using the MRI, a normal knee has maximum lateral lift is approx. 6.7 mm and maximum medial lift is approx. 2.1 mm, when a varus strees applied at a 90° knee flexion. Elevation of the lateral condyle due to valgus malalignment will distribute more contact force on the medial condyle. In this study, a polyethylene component of a posterior-stabilized right knee joint implant was developed to facilitate a high range of motion (ROM). Malalignment valgus was observed with the axes of knee motion joint implants were varied from 0°, 2°, 3° to 5 and knee bend measurements at 30°, 60°, 90°, 120°, and 150° of knee flexion. Using the knee kinematic motion simulator, the modified polyethylene component resulted in 0° malalignment there is no gap of the femoral component with the polyethylene component, from 30° to 150° of knee flexion. At 2° malalignment, the femoral component was raised by 0.5 mm at a 90° to 150° knee flexion and increased with increasing knee flexion. Maximum gap occurs at 5° malalignment in the amount of 5 mm at 150° of knee flexion. The aim of this study was therefore to evaluation malalignment valgus of the flexed knee using knee kinematic motion simulator, with reference to the tibiofemoral flexion gap. The result that the modified design is expected in an narrow down gap between femoral and polyethylene component used knee kinematic motion simulator, this accommodate deep knee flexion movement in daily activities and reduce the possibility of subluxation and dislocation at the polyethylene component during deep knee flexion. A wide gap between the femoral component and the polyethylene component and a significant amount of contact force in the medial condyle region might be the explanation for polyethylene component damage. It is expected that potential medial or lateral condylar lift at some stage during the gait cycle can be reduced.
KW - dislocations
KW - hyperflexion
KW - malalignment
KW - polyethylene
KW - subluxations
KW - wear
UR - http://www.scopus.com/inward/record.url?scp=85149046005&partnerID=8YFLogxK
U2 - 10.4028/p-l6p55i
DO - 10.4028/p-l6p55i
M3 - Article
AN - SCOPUS:85149046005
SN - 2296-9837
VL - 59
SP - 119
EP - 130
JO - Journal of Biomimetics, Biomaterials and Biomedical Engineering
JF - Journal of Biomimetics, Biomaterials and Biomedical Engineering
ER -