Evaluation of the Antibacterial Activity of Eco-Friendly Hybrid Composites on the Base of Oyster Shell Powder Modified by Metal Ions and LLDPE

Tsan Ming Chen, Meng Chieh Lin, Jia Hao Wu, Tse Ling Lin, Pin Ju Yu, Wei Song Hung, Kueir Rarn Lee, Widakdo Januar

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Transforming biological waste into high-value-added materials is currently attracting extensive research interest in the medical and industrial treatment fields. The design and use of new antibacterial systems are urgently needed. In this study, we used discarded oyster shell powder (OSP) to prepare calcium oxide (CaO). CaO was mixed with silver (Ag), zinc (Zn), and copper (Cu) ions as a controlled release and antibacterial system to test the antibacterial activity. The inhibition zones of various modified metals were between 22 and 29 mm for Escherichia coli (E. coli) and between 21 and 24 mm for Staphylococcus aureus (S. aureus). In addition, linear low-density polyethylene (LLDPE) combined with CaO and metal ion forms can be an excellent alternative to a hybrid composite. The strength modulus at 1% LLDPE to LLDPE/CaO Ag increased from 297 to 320 MPa. In addition, the antimicrobial activity of LLDPE/CaO/metal ions against E. coli had an antibacterial effect of about 99.9%. Therefore, this hybrid composite material has good potential as an antibacterial therapy and biomaterial suitable for many applications.

Original languageEnglish
Article number3001
JournalPolymers
Volume14
Issue number15
DOIs
Publication statusPublished - Aug 2022

Keywords

  • antibacterial material
  • biomaterials
  • calcium oxide
  • E. coli
  • S. aureus

Fingerprint

Dive into the research topics of 'Evaluation of the Antibacterial Activity of Eco-Friendly Hybrid Composites on the Base of Oyster Shell Powder Modified by Metal Ions and LLDPE'. Together they form a unique fingerprint.

Cite this