TY - GEN
T1 - Evaluation of austenite grains growth in high nb and low nb hsla steel
AU - Siradj, Eddy S.
N1 - Publisher Copyright:
© 2020 Trans Tech Publications Ltd, Switzerland.
PY - 2020
Y1 - 2020
N2 - This study was presented due to the increasing demand of High Strength Low Alloy (HSLA) steel, such as demand for thinner-walled and large diameter pipes in oil and gas industries. In order to meet the imposed economic restrictions, the high standard of all kinds of steel properties is required and can be achieved by controlling the steel microstructure. The austenite grain size influences the microstructure and properties of steel significantly, in which fine austenite grain size leads to higher strength, better ductility, and higher toughness. Studying the behavior of steel grain growth during the reheating process is still being a fascinating subject. P.R. Rios and D Zollner [1] mentioned that grain growth is the most important unresolved issue that has been a topic of research for many years. In this research, the behavior of austenite grain growth at a high niobium-low carbon (High Nb-low C) and low Nb-high C HSLA steel was evaluated, and the result was compared with other investigation. The results found that the austenite grain growth at high Nb-high C steel was slower than the growth at a low Nb-low C steel. The activation energy of austenite grain growth and both constant A and exponent n ware determined close agreement was obtained between the prediction of the model and the experimental grain size value.
AB - This study was presented due to the increasing demand of High Strength Low Alloy (HSLA) steel, such as demand for thinner-walled and large diameter pipes in oil and gas industries. In order to meet the imposed economic restrictions, the high standard of all kinds of steel properties is required and can be achieved by controlling the steel microstructure. The austenite grain size influences the microstructure and properties of steel significantly, in which fine austenite grain size leads to higher strength, better ductility, and higher toughness. Studying the behavior of steel grain growth during the reheating process is still being a fascinating subject. P.R. Rios and D Zollner [1] mentioned that grain growth is the most important unresolved issue that has been a topic of research for many years. In this research, the behavior of austenite grain growth at a high niobium-low carbon (High Nb-low C) and low Nb-high C HSLA steel was evaluated, and the result was compared with other investigation. The results found that the austenite grain growth at high Nb-high C steel was slower than the growth at a low Nb-low C steel. The activation energy of austenite grain growth and both constant A and exponent n ware determined close agreement was obtained between the prediction of the model and the experimental grain size value.
KW - Austenite
KW - Oswald repining
KW - Pinning effect
KW - Solubility Temperature
UR - http://www.scopus.com/inward/record.url?scp=85088300458&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.1000.404
DO - 10.4028/www.scientific.net/MSF.1000.404
M3 - Conference contribution
AN - SCOPUS:85088300458
SN - 9783035715996
T3 - Materials Science Forum
SP - 404
EP - 411
BT - Advanced Materials Research QiR 16
A2 - Zulfia, Anne
A2 - Putra, Wahyuaji Narottama
PB - Trans Tech Publications Ltd
T2 - 16th International Conference on Quality in Research, QiR 2019
Y2 - 22 July 2019 through 24 July 2019
ER -