Entity alignment between knowledge graphs using attribute embeddings

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

60 Citations (Scopus)

Abstract

The task of entity alignment between knowledge graphs aims to find entities in two knowledge graphs that represent the same real-world entity. Recently, embedding-based models are proposed for this task. Such models are built on top of a knowledge graph embedding model that learns entity embeddings to capture the semantic similarity between entities in the same knowledge graph. We propose to learn embeddings that can capture the similarity between entities in different knowledge graphs. Our proposed model helps align entities from different knowledge graphs, and hence enables the integration of multiple knowledge graphs. Our model exploits large numbers of attribute triples existing in the knowledge graphs and generates attribute character embeddings. The attribute character embedding shifts the entity embeddings from two knowledge graphs into the same space by computing the similarity between entities based on their attributes. We use a transitivity rule to further enrich the number of attributes of an entity to enhance the attribute character embedding. Experiments using real-world knowledge bases show that our proposed model achieves consistent improvements over the baseline models by over 50% in terms of hits@1 on the entity alignment task.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages297-304
Number of pages8
ISBN (Electronic)9781577358091
Publication statusPublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Fingerprint

Dive into the research topics of 'Entity alignment between knowledge graphs using attribute embeddings'. Together they form a unique fingerprint.

Cite this