TY - JOUR
T1 - Enhancing battery performance by nano Si addition to Li4Ti5O12 as anode material on lithium-ion battery
AU - Firnadya, Sarah Alya
AU - Syahrial,, Anne Zulfia
AU - Subhan, Achmad
N1 - Publisher Copyright:
© 2017, Springer-Verlag GmbH Germany.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - The lithium-ion battery is a battery that is being developed to become a repository of energy, particularly for electric vehicles. Lithium titanate (Li4Ti5O12) anodes are quite promising for this application because of its zero-strain properties so it can withstand the high rate. However, the capacity of LTO (Li4Ti5O12) is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200 mAh/g, but it has a high volume of the expansion. Nano-size can also help increase the capacity. Therefore composite of LTO/nano Si is made to create an anode with a high capacity and also stability. Nano Si is added with a variation of 1, 5, and 10%. LTO/nano Si composite is characterized using XRD, SEM-EDX, and TEM-EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh/g in the LTO-10% Si. Stability of composite LTO/nano Si is good, evidenced by the coulomb efficiency at the high rate of close to 100%.
AB - The lithium-ion battery is a battery that is being developed to become a repository of energy, particularly for electric vehicles. Lithium titanate (Li4Ti5O12) anodes are quite promising for this application because of its zero-strain properties so it can withstand the high rate. However, the capacity of LTO (Li4Ti5O12) is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200 mAh/g, but it has a high volume of the expansion. Nano-size can also help increase the capacity. Therefore composite of LTO/nano Si is made to create an anode with a high capacity and also stability. Nano Si is added with a variation of 1, 5, and 10%. LTO/nano Si composite is characterized using XRD, SEM-EDX, and TEM-EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh/g in the LTO-10% Si. Stability of composite LTO/nano Si is good, evidenced by the coulomb efficiency at the high rate of close to 100%.
KW - Li-ion battery
KW - LiTiO
KW - LiTiO/nano Si composite
KW - Nano Si
UR - http://www.scopus.com/inward/record.url?scp=85031423064&partnerID=8YFLogxK
U2 - 10.1007/s11581-017-2284-6
DO - 10.1007/s11581-017-2284-6
M3 - Article
AN - SCOPUS:85031423064
SN - 0947-7047
VL - 24
SP - 1029
EP - 1037
JO - Ionics
JF - Ionics
IS - 4
ER -