TY - JOUR
T1 - Enhancement of Sonocatalytic Activity and Stability of Magnetic LaFeO3/Fe3O4 Nanocomposites
AU - Afifah, Nur
AU - Saleh, Rosari
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/20
Y1 - 2017/5/20
N2 - Recyclable catalyst using magnetic LaFeO3/Fe3O4 nanocomposite has been successfully synthesized using co-precipitation method. The structural and magnetic properties of the samples were investigated using X-Ray Diffraction (XRD, Brunauer-Emmett-Teller (BET) surface area analysis, and Vibrating Sample Magnetomfeter (VSM) Spectroscopy. The XRD results revealed that the LaFeO3/Fe3O4 nanocomposite shows orthorhombic and cubic spinel structure from LaFeO3 and Fe3O4, respectively. The saturation magnetization of LaFeO3 increases with the increasing of Fe3O4 content in the nanocomposite. The sonocatalytic performance and recyclability of the sample were evaluated by degrading methylene blue (MB) as a model of organic pollutant. Compared to LaFeO3 nanoparticles, the sonocatalytic activity of LaFeO3/Fe3O4 nanocomposite showed better performance. The stability of the catalyst was also checked by removing the catalyst from the MB solution simply using an external magnetic field. The result shows that the sample has good stability.
AB - Recyclable catalyst using magnetic LaFeO3/Fe3O4 nanocomposite has been successfully synthesized using co-precipitation method. The structural and magnetic properties of the samples were investigated using X-Ray Diffraction (XRD, Brunauer-Emmett-Teller (BET) surface area analysis, and Vibrating Sample Magnetomfeter (VSM) Spectroscopy. The XRD results revealed that the LaFeO3/Fe3O4 nanocomposite shows orthorhombic and cubic spinel structure from LaFeO3 and Fe3O4, respectively. The saturation magnetization of LaFeO3 increases with the increasing of Fe3O4 content in the nanocomposite. The sonocatalytic performance and recyclability of the sample were evaluated by degrading methylene blue (MB) as a model of organic pollutant. Compared to LaFeO3 nanoparticles, the sonocatalytic activity of LaFeO3/Fe3O4 nanocomposite showed better performance. The stability of the catalyst was also checked by removing the catalyst from the MB solution simply using an external magnetic field. The result shows that the sample has good stability.
UR - http://www.scopus.com/inward/record.url?scp=85019716552&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/196/1/012050
DO - 10.1088/1757-899X/196/1/012050
M3 - Conference article
AN - SCOPUS:85019716552
SN - 1757-8981
VL - 196
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012050
T2 - 3rd International Conference on Functional Materials Science 2016, ICFMS 2016
Y2 - 19 October 2016 through 20 October 2016
ER -